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ABSTRACT

The progress reports of NASA-sponsored studies in the

areas of space flight and guidance theory are presented.

The studies are carried on by several universities and

industrial companies. This progress report covers the

period from July 23, 1964 to April i, 1965. The contracts

are technically supervised by personnel of the Astrodynamics

and Guidance Theory Division, Aero-Astrodynamics Laboratory,

Marshall Space Flight Center.
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SUMMARY

The progress reports of NASA-sponsored studies in the

areas of space flight and guidance theory are presented.

The studies are carried on by severaluniversities and

industrial companies. This progress report covers the

period from July 23, 1964 to April I, 1965. The contracts

are technically supervised by personnel of the Astrodynamics

and Guidance Theory Division, Aero-Astrodynamics Laboratory,

Marshall Space Flight Center.

INTRODUCTION

This report contains fourteen papers, the subject

matter of which lies in the areas of space flight and guidance

theory. These papers were written by investigators employed

at agencies under contract to MSFC.

This report is the seventh of the "Progress Reports"

and covers the period from July 23, 1964 to April I, 1965.

Information given in the earlier progress reports will not

be repeated here.

The agencies contributing and their fields of major
interest are:



Field of Interest Agency

Optimization Theory
(Calculus of Variations)

Vanderbilt University
Auburn University
Analytical Mechanics Associates

North American Aviation, Inc.
United Aircraft Corporation

Orbital Transfer

Control Theory Honeywell, Inc.

University of WisconsinCelestial Mechanics
Hayes International Corporation

Low Thrust Trajectories Gr_mman Aircraft Engineering Cor_

Large Computer Georgia Institute of Technology
Exploitation Southern Illinois University

w

The objective of this introduction is to briefly review

the contributions of each agency.

The first paper by Dr. M. Boyce and Mr. J. Linnstaedter

of Vanderbilt University develops a multiplier rule and ana-

logues of the Weierstrass and Clebsch conditions for a multi-

stage Bolza-Mayer calculus of variations problem. The number

of stages ls fixed, but partition points defining stage boun-
daries are variable. Discontinuities are allowed in variables

and constraint functions at partition points. The constraints

include finite equations and inequalities, as well as differ-

ential equations, all of which involve control variables. An

appendix to the report summarizes some of the results obtained

by C. H. Denbow, as modified by R. W. Hunt, for a generalized

Bolza problem.

The second paper by Joe W. Reece and Grady R. Harmon is

an application of the necessary conditions resulting from

the Pontryagin Maximum Principle to a particular model for

the simulation of reentry trajectories. The paper is a good

example of the detailed analysis needed to achieve a workable

computational procedure, but the method used to solve for the

boundary conditions is yet to be incorporated into the

procedure.
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The third paper by Henry J. Kelley and Walter F. Denham

derives the necessary conditions for optimal guidance poly-

nomial approximations by an ensemble averaging approach.

The merits of this approach can better be evaluated when a

computational scheme utilizing the derived necessary condi-

tions is outlined and applied to a trajectory analysis

problem.

The fourth paper by Gary A. McCue and David F. Bender

of North American Aviation presents a method for the numeri-

cal determination of optimum two-impulse orbital transfers

between inclined elliptical orbits. A numerical optimization

technique termed "adaptive steepest descent" is shown to

overcome convergence difficulties. Results are obtained for
"almost target" coplanar elliptical orbits. Extensions are

then developed for strongly inclined orbits.

The fifth paper by David F. Bender and Gary A. McCue

of North American Aviation presents numerical and analytical

results concerning optimum one-impulse orbital transfer

maneuvers. Approximate expressions for the minima of the

one-impulse maneuvers are derived. Numerical comparisons

of one-impulse transfers and corresponding optimum two-impulse

transfers are made. These comparisons show that for a small

range of shapes, one-impulse transfers are optimal.

The sixth paper by Frank Gobetz of United Aircraft

Corporation presents a study of the minimum fuel transfer

and rendezvous between neighboring low-eccentricity orbits

by power-limited rockets. The equations of motion are linear-

ized in three separate coordinate systems, given a variational

treatment, and solved in closed form. Both performance type

and guidance type of solutions are presented in each of the

three systems. By choosing an intermediate orbit for the

reference orbit in an application of the linear theory to

interplanetary transfer, results for Earth-Venus and Earth-

Mars transfers are found to agree well with exact results.

The seventh paper, submitted by E. B. Lee of Honeywell,

is entitled, "An Approximation to Linear Bounded Phase Coordi-

nate Control Problems." The technique employs a non-negative

"penalty function" which is small for state variables satis-

fying the given constraints, and large outside of this con-

straint set. An optimal control problem is solved where, as

a terminal condition, the integral of the penalty function

is bounded by a small constraint, thereby limiting the
excursions of the state variables outside of the constraint

set.
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The eighth paper by C. C. Conley of the University of
Wisconsin studies the solutions of the restricted three-body

problem near those equilibrium points which are collinear
with the two positive masses. This is done to gain insight

toward the development of an analytic proof and classification

of the periodic orbits that pass near these equilibrium points,
which have been discovered numerically by M. Davidson, and also

to hopefully gain insight into the nature of solutions of the
restricted three-body problem in general. The qualitative
observations that are made are all deduced from the linearized

equations.

The ninth paper, by A. A. Nafoosi and H. Passmore of

Hayes International Corporation, considers an approach to

the analytical solutio_ of the minimum fuel trajectory

integration problem through the Hamilton-Jacobi theory of

canonical transformations. This method replaces the ordinary

differential equations of motion with the Hamilton-Jacobi

partial differential equations. The method of separation of

variables and Jacobi's method for solving partial differential

equations are discussed and applied to progressively more
realistic approximations to the minimum fuel trajectory problem.

This approach is found to be of limited usefulness unless a

more appropriate transformation of the coordinates can be found

that would produce a more easily solvable Hamilton-Jacobi

equation.

The tenth paper, by Harry Passmore, also applies methods

of celestial mechanics to the problem of deriving an analytical

solution to the minimum fuel trajectory problem. By consider-

ing the k variables as coordinates of a fictitious body rela-

tive to the vehicle, and transforming the k equations to

equations relative to the same center of attraction as the

vehicle, equations analogous to the._hree-body equations are

obtained. These equations are transformed to canonical

equations and solved by Delaunay procedures. The solution
obtained is a first order approximation expected to be most

applicable to the many-orbit low-thrust problem rather than

interplanetary transfer or high-thrust trajectory integration.

The eleventh paper, by Hans K. Hinz, Robert McGill, and

Gerald Taylor, and the twelfth paper by Paul Kenneth and

Gerald E. Taylor, relate to their numerical experience with

the generalized Newton-Raphson method reported on in Progress

Report No. 5, as applied to the low thrust two-point boundary

value problem. Equations of motion in both applications are
formulated in two-dimensional polar coordinates. One appli-

cation concerns geocentric circular orbital transfer. Simple

4
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equations are given for first values used to begin the
iteration. Successful results have been achieved for tra-

jectories of up to twenty-one revolutions and correct to

four significant figures with convergence deteriorating past

this point. Greater accuracy may be expected by using

multiple precision arithmetic and better numerical integration
methods.

The second application of the numerical method concerns

the interplanetary trajectory with bounded thrust magnitude
and thrust angle used as control variables. Transit time is

specified and mass is maximized. Again, convergence has been

obtained to an accuracy of four significant figures with

further possibilities for improvement by using better

numerical methods.

It seems the Generalized Newton-Raphson Method shows
value for meeting specified end-conditions for the sensitive

low thrust trajectory optimization problem, although the

geocentric spiral trajectory sensitivity may still offer

difficulty.

The thirteenth paper by I. E. Perlin, J. H. Mackay, et al.,

contains a very thorough examination of the many different

aspects of multivariable function approximation by least squares

techniques. It also contains some illuminating examples of the

mathematical techniques which are used for the selection of a

few efficient estimation variables from a larger set.

The fourteenth paper by Robert Silber describes a

procedure for numerically computing the coefficients for the

Taylor's series expansion of the general solution of a normal

system of first order, ordinary differential equations in terms

of the time on any solution and the initial values of the vari-

ables and time for that solution. The method has appeared

previously in NASA TM X-53059 as part of a more involved method

to compute a guidance type of solution for a system of differ-

ential equations. The present paper singles out the first

mentioned solution as possibly deserving explicit mention, and
brings out the mathematical considerations that justify this

procedure and that are necessary for one to make reasonable

applications of it.
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NECESSARYCONDITIONSFORA MULTISTAGE

BOLZA-MAYERPROBLEMINVOLVINGCONTROLVARIABLESAND

HAVINGINEQUALITYANDFINITE EQUATIONCONSTRAINTS

By M. G. Boyce and J. L. Linnstaedter

l SUMMARY

/ /
/ A multiplier rule and analogues of the Weierstrass and Clebsch con-

/ditions are developed for a multistage Bolza-Mayer calculus of variations

/problem. The number of stages is fixed, but partition points defining

stage boundaries are variable. Discontinuities are allowed in variablesand constraint functions at partition points. The constraints include

finite equations and inequalities, as well as differential equations, all

of which involve control variables. --,/_,]_'t,)

..........An Appendix summarizes some of the results obtained by C. H. Denbow,
as modified by R. W. Hunt, for a generalized Bolza problem. The Appen-

dix is independent of the rest of the paper.
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NOTATION

Ranges of Subscripts and Superscripts

a = l,...,p

b = l,...,p-i

C = 0,..._S

d,h = l,...,r

e,j = l,...,m

g = l,...,q

i = l,...,n

k = i, ... ,S

,D = I,...,N = n+m+r

,Z = I,...,M = n+q+r

¥ = I,...,K = s+m+r

]O= 0,...,K " s+m+r

Intervals, Re_ions and Arcs

I
a

R
a

S

R
a

T

S

C
a

E

T

C
a

T

E

interval t < t < t
0 -- -- p

subinterval between partition points ta_ 1 and t a.

open connected set in (t,x,y) space.

open connected set in (to,...,tp,X(t o),x(tl),x(t_),...,x(tp?) space.

open connected set in (t,z,_) space.

open connected set in(to,...,tp,_(to),_(t_?,z(t_),...,Z(tp_? space.

admissible sub-arc.

admissible arc.

admissible sub-arc for transformed and Appendix problems•

admissible arc for transformed and Appendix problems.

Functions and Variables

t

to ,•. .,tp

x

Y

T_
1

M s.
g

independent variable.

< tI < ... < t .partition set with to P

state variable vector (Xl,...,Xn).

control variable vector (yl,...,ym).

differential equation functions, t in I
a •

finite equation functions, t in I
a"

9



a

N h

L.
l

M
g

N h

Jk

J
o

%

a a
D1 ,D 2,A,B

x(tb),z(t b)

dib, dd. b

a a

ci, c

z

fz

f
o

3-0
F

H

ep

Z,Y

inequality constraint functions, t in Ia

differential equation functions, t in I; L.=L_, t in I .
1 1 a

finite equation functions, t in I; Mg=Ma,g t in I I

a

inequality constraint Sunctions, t in I; Nh=<, t in la.

end and intermediate point constraint functions.

function to be minimized.

multiplier'vector (_l,...,_n) for differential equations.

multiplier vector (Wl,...,_q)'for finite equations.

vector (_l,...,_r) for inequality constraints.multiplier

diagonal matrices.

left hand limit at tb.

right hand limit at tb.

amount of discontinuity at tb.

integration constants in multiplier rules.

vector (Zl,...,ZN) for transformed and Appendix problems•

differential equation functions for z-system problems.

end and intermediate conditions for z-system.

function to be minimized for z-system.

multipliers for z-system.

Lagrangian function.

generalized Hamiltonian function.

Weierstrass E-function.

constant multipliers in transversality equations.

Clebsch condition variables.

Weierstrass condition variables.

o
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INTRODUCTION

In 1937 C. H. Denbow(reference i) formulated a multistage genera-

lization of the Bolza problem and established necessary and sufficient

conditions for it. His method involved transforming the multistage

problem into a standard problem of Bolza by a transformation due to

W. T. Reid and L. M. Graves. The transformation requires that the num-

ber of stages be fixed and the staging points be distinct. By stages

we refer to the subintervals into which the range of the independent

variable is partitioned by intermediate points involved in the constraints.

R. W. Hunt (2) has applied Denbow'smethods to a Mayer form of the

multistage problem in which discontinuities are permitted in the vari-

ables and constraints at staging points. He obtained the first three

necessary conditions. Wehave summarizedhis results in the Appendix,

with someminor modifications.

In this paper we further extend the work of Denbowand Hunt to in-

clude control variables, finite equation conditions, and inequality con-

straints. Following Hunt, we use the Mayer formulation, which Bliss (3,

p. 190) has shownequivalent to the Bolza form for one stage problems.

Also we have used differential constraints in normal form, a form di-

rectly applicable to trajectory optimization. Hestenes (4, pp. 4-6) has

shownthat the one stage problem in this form with control variables is

reducible to the usual form of the Bolza problem and vice-versa. The

method of Valentine (5) is used to transform the inequality constraints

into differential equations.

Ii



FORMULATIONOFTHEPROBLEM

Let t be the independent variable. Define a set of variables

(to, ..., t ) contained in the range of t to be a partition set ifP

and only if t < tI < ... < t . Call the elements of the partitiono p

set ,_artiti°n points. Let I denote the interval to -< t _< tp, and

let I denote the sub-interval ta_ I < t < t for a = i, ..., p - ia - a

and ta_ I _< t _< ta for a = p.

Let x(t) denote the set of functions (xl(t), ..., Xn(t) ). For

each i, i = 1, ..., n, assume x.(t) to be continuous on I except
1

possibly at partition points tb, b = i, ..., p - i, where finite left

and right limits exist; denote these limits by x i(t_) and x. (t_)1

respectively. The amount of discontinuity of each member of x(t) at

each partition point will be assumed known, and we write

xi(t_)- xi(t_) - dib = O,

+

with each dib a known constant. -Also we let x i(t b) = x i(t b). Thus

x.m(t) is continuous at tb if and only if dib = O.

Let y(t) denote the set (Yl(t), ..., Ym(t)), where yj(t) is

piecewise continuous on I, j = i, ..., m, finite discontinuities being

allowed between, as well as at, partition points. In the formulation of

the problem the yj(t) will occur only as undifferentiated variables

and will not occur in the function to be minimized nor in the end and

intermediate point constraints. Such variables are called control vari-

ables_ while the xo(t) are called state variables.
i •

m
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Differentiation with respect to t will be indicated by a super-

posed dot and partial derivatives by subscript variables. Each subscript

or superscript index will always have the range specified when first

used (and given in the table of notations), and repeated indices in a

product will indicate summationunless the contrary is stated.

The problem will be to find in a class of admissible arcs

x(t), y(t), (to, ..., t ), t < t < t ,p o-- -- p

which satisfy differential equations

i.m = La(t'x'Y)' t in Is,

finite equations

a = i, ..., p, i = 1, ..., n,

Ma(t,x,y) = O,
g

g = i, ..., q,

inequalities

_h(t,x,y) > O, h = i, ..., r, q + r _< m,

and end and intermediate point conditions

D

Jk(to, ... t X(to) , x(t I) x(t I) ..., X(tp)) = O,, p, , ,

k=l, ..., s< (n+l)(p+i),

x. - -) = o,m xi(tb - dib b = i, ..., p - i,

one that will minimize

Jo(to' "''' tp, X(to), x(t_), x(tl), ..., X(tp)).

13



In order to state precisely the properties of the functions in-

volved in the problem, let R be an open connected set in the m+n+l
a

dimensional (t,x,y) space whose projection on the t-axis contains the

interval I , and let S be an open connected set in the 2np + p + i
a

dimensional space of points

(to, ..., tp, X(to), x(t_), x(t_), ..., X(tp)).

a Ma a,
The functions Li_ g, N_ are assumed continuous with continuous par-

tial derivatives through those of third order in R , and Jo' Jk area

to have such continuity properties in S. For each a, the matrix

M a

gYj

0

N8 a

hyj DI

is assumed of rank q + r in R , where D_ is an r by r diagonala

Na... as diagonal elements. The matrixmatrix with N_, ' r

Jl Jctb Jet Jcx'(t°) J (t_) Jcx (t_) J ]Icx. cx (tp) 'Jcto p m m i i

c=O_. • • _S_

is assumed of rank s + i in S.

An admissible set is a set (t,x,y)

a = i, ..., p. An admissible sub-arc C
a

x(t), y(t), t on I , with each (t,x,y)
a

x(t) is continuous and _(t), y(t)

An admissible arc is a partition set

in R for some
a

is a set of functions

admissible, and such that

are piecewise continuous on I
a

(to , ... t ) together with a set' p

14



of admissible sub-arcs C , a = i, p, such that the set•• a "'''

(to, ..., tp, X(to) , x(tl) , x(tl) , ..., X(tp)) is in S.

An admissible arc

THE MULTIPLIER RULE

E for which

Jk(to, ... t , X(to) x(tl) x(tl) , ..., x(t )) = 0,' p ' , p

x i(t b) - x i(t b) - dib = O,

is said to satisfy the multiplier rule if there exists a function

H(t,x,y,_,_,_) = _iLt - _gM_ + _hN_,

with multipliers _i(t),_g(t), _h(t) continuous except possibly at

partition points or corners of E, where finite left and right limits

exist, such that for each t in I.a, a = i_ ..._ p,

4 a > 0,
(i) X. = t H dt + a H = 0, xi a M a = O,

z _i xi ci ' YJ = Li ' g Nh --

and such that the transversality matrix

(2)
H(t o) H(tb)-H(t b) -H(tp)-_.(t o) -_i(tb) + _" (tb) _. (t)

z z p

Jct b J J , +,+JJct o Ctp l i cx. (t)cx(to) Jcx cxi(t J • p

is of rank s + i. The multipliers _h are zero when Nh > O. Every

minimizing arc E must satisfy the multiplier rule.

15



a
It may be noted that the constants c. are the initial values

l

+

_i(ta_l), respectively, of the multipliers "_i for the several stages.

Corollary. Between corners of a minimizing arc E the equations

i i = HI., _i = -Hx ' H : O, H = O, 72hH = 0 (not summed
l i Yj _g _h

hold and hence also

dH
dt - Ht"

To prove the multiplier rule we transform the problem into a Den-

bow problem of the type treated by Hunt and summarized in the Appendix.

Let z(t) denote the set (zl(t) , ..., zN(t)) , N = n + m + r, where

t t

zi(t) = xi(t), z l'(t) =7 yj(t)dt, Zn+m+h(t) =f _Nh(t,x(t),y(t))dt;
n+ t t

O o

or, equivalently,

(3) zi(t) = xi(t)' Zn+j'(t) = yj(t), £n+m+h(t) =_Nh(t,x(t),y(t))

with initial 5onditions

missible arcs z and
n+j n+m+h

tion of £n+m+h the superscript a has been omitted from Nh.

this is done, it is to be understood that Nh(t,x,y ) = N_(t,x,y)

t is in I . Similar usage applies to L. and M .
a m g

Denote the differential equations for the transformed problem by

Zn+j(t o) = Zn+m+h(to) = O. Note that for ad-

z are continuous on I. In the defini-

Where

when

(4)
t,z,a _) = O, _ = i, ..., n + q + r = M, t in I ,a

16



where

_a = _. _ LS.(t . . )i 1 'Zl '"""'Zn' Zn+l '"""'Zn+m

(5) _a : _g(t,z I . .n+g '"""'Zn'Zn+l'" ""'Zn+m )

 a+q+h= a . .n+m+h - Nh(t'zl' . z•. , n,Zn+l ,'- ,Zn+ m).

Let the conditions on end and intermediate points be denoted by

J

(6) fy(to,...,tp,Z(t o),z(t i),z(t l),...,z(tp))=O, _ =l,...,s+m+r=K,

where

fk = Jk(to'''''tp'Zl(to)''"'Zn(to)'Zl(tl)'''''Zn(t_)'zl(t_)'''''

z (tl) (tp) Zn(tp) ),n '" ""'Zl '" ""'

fs+j = Zn+j(to)'

fs+m+h = Zn+m+h(to )'

plus the following difference relations at intermediate points,

(7) z_(t_) - z_(tl_) - d_b = 0, o_ = i, ..., N.

Note that

are continuous.

f
O"

point

%b = 0 for _ = n + i, ..., N, since

Let the transform of the function

Each point (t,xl,...,Xn,Yl,...,ym) of

(t,z 1 ..,Zn,_n÷l, _n+m ). Let R'
'* ***' a

Zn+ j and Zn+m+ h

J be denoted by
O

R transforms into a
a

denote the open set in

(2N+l)-dimensional (t,z,_) space whose restriction to the coordinates

17



(t,z I _..,...,Zn,Zn+ I .,Zn+m )

nates of

Let

of points

is the transform of R , the other coordi-
a

T

R having unlimited range, - _ to +_o.
a

!

S denote an open set in the 2Np + p + l dimensional space

whose restriction to

(to, "'''tl'Zl (to) '''''Zn(to) 'zl(t£) ' "'''Zn(t£)'z1(tl) ' "'''Zn(tl) ' "'" '

zl(tp),...,Zn(tp)) is the transform of S and which includes zero

values for Zn+l(to),...,zN(to).

An admissible set for the transformed problem will be a set

! !

(t,z,_) in R for some a. An admissible sub-arc C will be a set
a

of functions z (t) on I
a

z(t) continuous and z(t)

arc will be a partition set

a

having each (t,z,_) admissible, with

piecewise continuous on I . An admissible
a

(to,...,tp) together with a set of admis-

sible sub-arcs C whose end and intermediate points lie in S .
a

It follows from.the assumptions about the functions L_l, Mag' Nha

in Ra and Jo" Jk in S that the functions _ and fo, fy will

T

have continuous partial derivatives to the third order in regions Ra

' 11¢;IIand S , respectively. The matrix _ can be readily verified to be

of rank n + m + r for t in I since it can be written
a

I - L a 0

lyj

M a

gYj

0 _ N a a

hyj D2

a

where I is an n by n identity matrix and D 2 is an r by r diagonal

18



matrix with diagonal elements 2_n+m+l,...,2_ N.

lifPto fPtb fptp fpz(t O) fpz(t_)fpz(t_)

is found to be of rank K + i.

The assumptions made in the formulation of the problem in the Ap-

pendix are thus established_ and hence the theorems of the Appendix can

be applied. From equations (5) the required function F becomes

Also the matrix

fpZ(tp) II, _ =0,1,...,K,

F(t,z,£,_,_,W) = _i (£i - L_.') +}_gMga + Vh(Zn+m+h.2 _ Nh),

where the arguments of L_ M a _hi' g' are

(t,z l,...,zn,{n+l_..._{n+m ), t in Ia, a = l,...,p,

and the multipliers _i(t),}_g(t), _h(t) are continuous except possibly

at corners or partition points, at which right and left limits exist.

Now define a function H whose arguments are

(t,zl,...,Zn,_n+l,...,Zn+m,_,_,_) as follows:

H : _.L_ a W a
m m -_gMg + hNh .

The relationship between F and H is given by the equation

• °

F = _izi + %Z_+m+ h - H,

and from equations (A-5) of the Appendix

t a_. = - H dt+c
l z. i'

t m
a-i

19



a
- H.

z . = Cn+j-
n+j

• a

- 2WhZn+m+ h = Cn+m+ h
(not summed).

Furthermore, the multiplier rule given in the Appendix establishes the

existence of constants ep, not all zero, satisfying the transversality

conditions:

t

+ [_i_i + 2_h_n2+m+h - _ H. ] o = O_
n+j Zn+ jecJcto

+

ecJctb + [J[i_i + 2 _hZn2+m+h Zn+jHvn+ j vb

ecJctp + [_izi + 2*2hZ_+m+ h - Zn+jH_n+j]t

P

t

[ ]Oo
ecJcz i (tO] - i

=0,

es+j - [- H_ ]t° = O,
n+j

• to

es+m+ h - [2_hZn+m+h] = O, (not summed),

+

ec(Jcz i(tb) + J zi(tb )) - [_i] tb=- O,
c tb

+

+

_'n+m+h] tb = O, (not summed),

- 2_ h tb

6
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r_

ecJczi(t p) -[_i]t

P

P

= O,

-[2W_ 1 = o,
n n+m+hJ t

P

= O,

(not summed).

a
Recalling the equations - H. = c and observing from the

Zn+ j n+j

foregoing equations that the H. are continuous at partitiom pointsz
n+j

and zero at t a =
p, we have Cn+ j 0 for each a and j. Similarly,

• a (not summed), and the "
- 2_hZn+m+ h = Cn+m+ h - 2_hZn+m+ h are continuous

a

at partition points snd zero at tp; hence Cn+m+ h = 0 for each a

and h. Since _2 = Nh, this implies that _h = 0 when Nh > 0n+m+h

It now follows that

_i_i + 2_2+ +_ - " = H,n n m n Zn+jH_
n+j

and the first p + i transversality equations become

t°ecJct + = 0
o

+
t

ecJctb + [HI b = O,
t b

ecJct b +[Hlt = O.

P

Thus we have (p+l)(n+m+r+l) transversality equations; but, since
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e_ = 0 for _ > s (i.e., the last m+r of the e's are zero), these may

be reduced to only (p+l)(n+l) transversality equations. Changing vari-

ables to those of the original problem and writing this reduced set of

transversality equations in equivalent matrix form completes the proof

of the multiplier rule.

An extremal is an admissible arc and set of multipliers satisfying

equations (i) and such that its functions i(t), y(t), _(t),_(t), _(t)

have continuous first derivatives except possibly at partition points,

where finite left and right limits exist. An extremal, or sub-arc of an

extremal, is called non-sinsular if the determinant

Hyj Ye Mgyj Nhy j

0

M 0 0 0

gYe

N 0 0 A

hY e

0 0 A B

is different from zero along it, A and B being diagonal matrices

with diagonal elements _NI, ..., _Nr and _i' ..., Vr , respectively.

To define normal arcs, let the transversality conditions be used in

equation form involving constant multipliers e , ..., e , as in the
o s

proof given for the multiplier rule. An admissible arc with a set of

multipliers _i'_g' _h' ec satisfying the multiplier rule is then

= i. For this value of e the multipliers arecalled normal if e° o
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.p

unique• On putting e = i in the transversality equations the follow-o

ing equivalent matrix form is obtained.

For a normal minimizing arc the transversality matrix

H(to)+Jot H(t_)-H(t_)+Jotb "H(tp)+Jot -_i(to )+J (t)
o p °xi o

Jkt ° Jkt b Jktp Jkxi(t ° )

+ +

"_" (tb) +_i (tb)+Joxz i (tb) +J°xi (tb) _. (tp) +J ox i (tp)

Jkxi (tb) +Jkxi (tb)

is of rank s.

Since the matrix is of order

ment that the rank be s imposes

s + i by (n+l)(p+l), the require-

(n+l)(p+l) - s conditions. This is

one more condition than is imposed by the multiplier rule as first

stated, the condition there being sufficient to determine the multipliers

only up to an a.rbitrary proportionality factor.

WEIERSTRASS CONDITION

The _-function of the Appendix becomes, on using F

equation (8),

as given by

g =AiZi + _n Z2n+m+h - H(Z) - _iz'i - Wh{nS+m+h + H(i)

- (Zi-{i)A i + (Zn+j-_.n+j)H { ({) - (Zn+m+h-Zn+m+h)2_hZn+m+ h,
n+j

23



where the complete set of arguments in H(A) is

(Zl,...,Zn,Zn+l,...,Zn+m,_l,...,_n,_,...,_m, Vl,...,_ r) and in H(Z),

the same except that Zn+l "'''Zn+m replace {n+l "" 'Zn+m", _ • " Sinc_

Zn+j = Yj and Zn+m+h =_Nh' it fol_ows from the multiplier rule that

along a minimizing arc H. (_), _h_ and _h_n+m+h are all zero.
Zn+ j +m+h'

Hence, after simplification of _, the Weierstrass condition is that for

a normal minimizing arc E the inequality

: H({) - H(Z) + _hT,n2+m+h _> 0

must hold at each element (t,z,{,A,_,W) of E' for all admissible

sets (t,z_) satisfying Mg(t_Z) = 0 and _2n+m+h -Nh(t' _) = O. Let

zi be replaced by x i, Zn+j by yj, Zn+j by Yj, and _2n+m+h by

Nh(t,x,Y). Then, on referring to the definition of H and. utilizing

the facts that along a minimizing arc M (t,x,y) = O, _hNh(t,x,y) = 0g

(not summed) and that Mg(t,x,Y) is required to be zero in the Weier-

strass condition, one can reduce the condition to the following form.

Weierstrass Condition. For a normal minimizin_ ar____cE the inequsl-

AlL i (t,x,y) _>AlL i (t,x,Y)

must hold at each element (t,x,y,A,_,@) of E for all admissible sets

(t,x,Y) satisfyin_ Mg(t,xTY) : 0 and Nh(t,x,Y) > O.

CLEBSCH CONDITION

To apply the Clebsch condition of the Appendix to our transformed
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problem we need the second partial derivatives of F.

these are found to be

F_i_ 0, F .... H. _ , F. .Zn+jZn+e Zn+j n+e Zn+jZn+m+h

F. . = _I2_h if d = h,

Zn+m+hZn+m+d L 0 if d _ h.

From equation (8)

= 0,

On dropping the terms in the Clebsch inequality having zero coefficients,

re-nmmbering the subscripts of the _'s in the remaining terms and de-

noting the last r of them by el, ..., er, we can state that for a nor-

mal minimizing arc the inequality

- H. . _. _ + 2_e_ > 0
z . j e nn --
n+j Zn+e

must hold at each element of E' for all _l'''''_m'el '''''er satisfy-

ing the equations M . _. = 0,

gZn+ j J

summed).

By the multiplier rule, _h = 0

an element where Nh = 0, and hence

" = 0 (h not
Nhzn+ j J - 2Zn+m+he h

at an element where Nh > 0. At

Zn+m+h = 0, one may choose 8h _ 0

but _l,...,_m and the remaining 8's all zero. The Clebsch condition

would then imply Kh _ 0. Thus, for a normal minimizin_ arc the multi-

_h are all non-negative.

Since _h = 0 when Nh > 0, it follows that at elements of a mini-

mizing arc where Nh > 0 the term 2Whe _ of the Clebsch inequality

would drop out. When Nh = 0 the term can also be dropped, for,
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• _ " -- 0
Zn+m+ h would then be zero, and the condition Nh_n+ j j - 2Zn+m+h@ h

(h not summed) would be satisfied for any eh. In particular the Clebsch

= _.= 0
condition would have to be satisfied with eh 0 provided Nh_n+ j J

and M • _. = O. Thus the condition can finally be stated in the fol-

gZn+ j J

lowing form.

Clebsch Condition. Fo_r _ norm_____minimizing ar__ccE th___einequality

H _._ <0

Y_'Ye$ J e-

must hold at each element (t,x,y,_,_,w) of E for all e_

_l'''''_m satisfying M
gYj

where in the last equation

(t,x,y)_.j = 0 __and Nhyj(t,x,y)_.j = O,

h ranges only over the subset of

l,...,r for which Nh(t,x,y) = 0.
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APPENDIX

This appendix gives the formulation of the Denbow problem as modi-

fied by Hunt together with the multiplier rule and the necessary condi-

tions analogous to those of Weierstrass and Clebsch. At the expense of

some repetition_ we have made this appendix independent of the main part

of the paper.

Let t be the indep@ndent variable. For fixed p, define a set of

to be a partition set if and only if

denote the interval t < t < t and
o -- -- p

for a = i, ..., p - i and

z(t) denote the set of functions

variables (to, tI, ..., tp)

t < tI < ... < t . Let Io p

the subinterval ta_ I < t < t-- a

ta_ I < t < t for a = p. Let-- a

I
a

(zl(t), ..., zN(t)) , where each z_(t), 0C= i, ..., N, is continuous on

T except possibly st partition points tl, ... tp_ I.

+ +

right and left limits z_(tl) , z_(tl) , ... z_(tp_l)

and we fez z_(t b) = z_(tb) , b = i, ..., p - i.

The problem will be to find in a class of admissible arcs

At these points

are assumed to exist

z(t), (to,...,tp), to --< t _< tp,

satisfying differential equations

(A-I #_ (t,z,_) = 0, t in I , _ = I,...,M < N,
a

and end and intermediate point conditions

(A-2)
fg(to,...,tp,Z(t o),z(tl),z(t l),...,z(tp)) = 0,

y = l, ...,x <

27



(A-3) zac(tb) - z_(t b) - d_b -- 0

one that will minimize

fo(to,...,tp, Z(to) , z(t[), z(tl) , ..., Z(tp)).

!

Let R be an open connected set in the 2N+I dimensional (t,z,_)
a

space whose projection on the t-axis contains I . The functions ¢_a

f

are required to have continuous third partial derivatives in R and
a

tt ] ' 'each matrix _ is assumed of rank M in R . Let S denote ana

open connected set in the 2Np+p+l dimensional space of points

(to,...,tp,Z(to),Z(t[),z(t_),...,Z(tp)) in which the functions

f#, p= O, 1, ..., K have continuous third partial derivatives and the

matrix

O

(A-4)
ptp 7oz_ (t° ) ff0zo_(t[ ) f,z_(tb) _z_(tp)

is of rank K+I.

!

An admissible set is a set (t,z,_) in R for some a=l,...,p.
_ a

!

An admissible subarc C is a set of functions z(t), t on I , with
a a

each (t,z,_) an admissible set and such that z(t) is continuous and

I

_(t) is piecewise continuous on I . An admissible are E is a parti-
a _

!

tion set (to,...,tp) together with a set of admissible subarcs Ca,

a = l, ..., p, such that the set (to,...,tp,Z(to),_.(tl),z(ti),...,Z(tp/)
!

is in S .

Multiplier Rule. An admissible arc E' that satisfies equations

(A-I), (A-2), (A-3) is said to satisfy the multiplier rule if there

28



exist constants e not all zero and a function
P

F(t,z,_.,X) = _/_(t,z,_), t in I,a

with multipliers 1_(t) continuous except possibly at corners or dis-

continuities of E_ where left and right limits exist, such that the f01-

lowing equations hold:

t

f a
(A-5) Fj_ = Fz dt + c , t in

ta-i
a

+ = 0_

+

+ = O_

t_

e f + Fz_ t
P

= O,

-t

e_fpzot(to)- [F[_] o = O,

+

II+ + - :n,v

ee(fpz (tb) fpz_(tb )) F{_ tb

epfp =0.z (tp)- [F[c_]t

P

Every minimizing arc must satisfy the multiplier rule.

An extremal is defined to be an admissible arc and set of multipliers

(to, ,tp) _p < t < t ,z_(t), ... , (t), to _ _ P

satisfying equations (A-l) and (i-5) and such that the functions
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_._(t), _(t) have continuous first derivatives except possibly at par-

tition points, where finite left and right limits exist. An extremal is

no___n-singular in case the determinant

_ c(,D = i, ..., N
F_,_ _

_ 0 _,_ = i, ..., M

is different from zero along it. An admissible arc with a set of multi-

_ = i. Withpliers satisfying the multiplier rule is called normal if e°

this value of e the set of multipliers is unique.
o

Weierstrass Condition• An admissible arc E' with a set of multi-

21iers _(t) is said to satisfsr the Weierstrass condition if

6 (t,z,_.,_,7.) = F(t,z,Z,A) - F(t,z,_,A)

• !

- (Z_ - _)F_. (t,z,_,A) _> 0

holds at every element (t,z,_,_)

(t,z,7.) satisfying the equations

of E' for all admissible sets

_ = O. Every normal minimizing arc

must satisfy the Weierstrass condition.

Clebsch Condition. An admissible arc E' with a set of multipliers

_@(t) is said to satisfy the Clebsch condition if

F_ _ (t,z,_,l) _ _ _> 0

holds at every element (t,z,£,k) of E _ for all sets (_I'''''_N)

satisfying the equations

_ (t,z,_) = 0.

Every normal minimizin_ arc must satisfy the Clebsch condition•
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1

SUMMARY $3o5_

The Naximwn Principle of Pontryagin is used to find the point-to-

point re-entry trajectory of a space vehicle _ith an offset center of

gravity which will minimize the accumulated aerodynamic acceleration.

The mathematical model used incorporates the yaw angle and the true

angle of attack as control variables. The set of characteristic dif-

ferential equations is written with both algebraic and differential

constraints. A computation procedure is devised so that numerical

solutions can be obtained on a digital computer. __
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LIST OF SYMBOLS

G

m

M

m

a

IRl

R
o

SR

CR

SY

CY

SP

CP

a

Gravitational constant

Mass of the vehicle

Mass of the earth

Plumbline position vector

Missile system position vector

Aerodynamic system position vector

Absolute value of the plumbline position vector

Earth' s radius

Roll angle

Yaw angle

Pitch angle

Sine _r

Cosine _r

Sine _y

Cosine _y

Sine _p

Cosine _p

Aerodynamic force in _,he aerodynamic coordinate system
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_am.

A

q

f(_, _y)

t

VR

W

Aerodynamic force in the missile system

Gravitational force in the plumbline system

Projected cross-sectional area of vehicle

Dynamic pressure

Vehicle configuration function

Earth's angular velocity vector in plumbline system.

Time

Relative velocity vector (Plumbline System)

Relative velocity vector (Aerodynamic System)

Relative velocity vector (Missile System)

Velocity vector for abnormal air movement in plumbline

system
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I. INTRODUCTION

In this paper an attempt is made to treat the optimum re-entry

problem in a simplified dynamical manner. The condition for optimality

is that the integral f(DRAG)2 dt be a minimum for fixed end points.

The first order differential equations of translational motion and the

algebraic equations defining the relative velocity vector are the

constraints. It is assumed that the attractive force of the earth and

the aerodynamic drag are the only forces influencing the vehicle's

motion. The vehicle has an offset center of gravity which aids maneu-

verability. The performance analysis is based on the Pontryagin fixed

end point problem with dual control variables.
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II. STATEMENT OF THE PROBL_

The problem herein presented is that of determining from a given

class of allowable trajectories the best one yielding mission fulfillment.

A space vehicle is assumed to initiate a re-entry into the earth's

atmosphere from some initial point above the earth's surface. The

influencing forces are the gravitational force of the earth and the

aerodynamic force created by atmospheric drag. The prediction of the

vehicle's performance is based on the assumption that a control system

is desired which will satisfy the following criteria:

I. Minimization of the accumulated g-forces on the vehicle's

occupants.

2. Capability of making a point landing.

In mathematical form the first of these becomes the minimization

of the integral of the square of the total aerodynamic acceleration.

The second can be accomplished by the proper choice of the initial

auxiliary variables.

The performance problem thus formulated becomes the Pontryagin

fixed end point problem, where the functional to be minimized has as

constraints the first order equations of motion and the finite relative

velocity equations. The boundary conditions are the initial and terminal

values of position and velocity. The yaw and true angles of attack are

taken as control variables.
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Additional assumptions made are as follows:

i. The earth is a rotating sphere and the inverse gravity law

holds.

2. The mass of the vehicle is invariant with respect to time.

3. The vehicle has an offset center of gravity which is

invariant with respect to the vehicle.

h. The center of pressure is invariant with respect to the

center of gravity.
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III. COORDINATE SYSTEMS

Three rectangular cartesian coordinate systems will be used in

this paper. They are:

i. The plumbline space fixed coordinate system

2. The vehicle fixed missile system

3. The aerodynamic system.

A. PLUMBLINE SYSTEM

The plumbline system, Figure I, has its origin at the earth's

center with the Y axis parallel to the gravity gradient at the launch

point. The X axis is parallel to the earth fixed launch azimuth and

the Z axis is such as to form a right-handed system.

B. MISSILE SYST_

The missile system, Figure i, is defined with its origin at the

center of gravity of the vehicle and its Ym axis parallel to the longi-

tudinal axis of the vehicle. The x and z axes are taken so as to form
m m

a right-handed system which is parallel to the plumbline system at the

launch point.

As the vehicle moves along its trajectory, the missile system

undergoes a displacement with respect to the plumbline system. In
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flight the two coordinate systems are related through Eulerian angles

which are measured by a gimbal. The flight direction of the vehicle is

defined by first rotating about the Y axis by @r' then about the new

intermediate x axis by _y, and finally about the z axis of the second

intermediate system by %. All three rotations are considered positive

counterclockwise when viewed from the positive end o£ the axis about

which the rotation is taken (see Figure 2).

Thus, a position vector in the missile system may be written in

terms of a position vector in the plumbline system as

or

X

ml
I

Ym I=

z I

_m]

_m = [(_p] [_y] [_r] [_ (I)

--CP SP O--

-SP CP 0

0 0 1
m

m

i 0

0 CY SY

0 -SY CY

0 CR 0 -SR

0 1 0

SR 0 CR

m --

X

Y

Z

(la)

where CP designates cosine _p, etc. Expanding the equation above gives

r CPCR + SPSYSR SPCY -CPSR + SPSYCR_ I

Xm = I -SPCR + CPSYSR CPCY SPSR + CPSYCR I _ = [_]_ (ib)

L_ c sR -sY c cR _j

C. AERODYNAMIC SYST_

The aerodynamic system is defined with its origin at the center of

pressure of the vehicle and its Ya axis coincident with the relative ve-

locity vector. The x and z axes are chosen to form a right hand system.
a a
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Again, as the vehicle moves in flight, there will be a displacement

of the missile and aerodynamic coordinate systems relative to one

another. The direction of the relative velocity vector or the Ya axis

may be defined by the following rotations:

I. Rotate the vehicle fixed reference frame about the Ym axis

such that the xm axis is brought to lie in the plane which

contains the Ym _axis and the relative velocity vector. Denote

this angle as a .
Y

2. Rotate about the new z axis to bring the Ym axis coincident

with the relative velocity vector. Denote this angle as _.

This angle is the so-called true angle of attack.

A position vector may now be written in the aerodynamic system in

terms of the missile system as

Xa= -[_][_y] _m' (21

or

x
a

Ya =

z
a

x
a =

D

C_

S_

0

-S_ 0 C_
Y

Ca 0 0

0 I S_
Y

C_ C,_I [ -S:z

Ca S_ I C_

Y I

Say I 0
_ I

0 -Sa x
y m

I 0 Ym

0 Ca z
y m

m m

I -Cc_ S_ -

I Y

II -Sa S_y

I ca
I Y

(2a)

(2b)

Figure 3 illustrates this system.
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IV. BASIC MECHANICS

46

Gravitational force. Since a spherical earth was assumed, Newton's

Law of Universal Gravitation which gives us an attractive force between

the earth and the vehicle is

C_m_ (3)
- IRI

Aerodynamic force. The aerodynamic force, Figure 2, is a force

due to atmospheric drag. It acts through the center of pressure and

the direction of the force is always parallel and opposite to the

relative velocity vector. Written in the aerodynamic system the force

takes the following form:

a I!l (_)

In the missile system

_am -_ [AaIT _a' (5)

o_

am

B m

! amx

-- F
amy

F
_u'nz

-F S_ Ca
a y

= -F
a

F
a

m

Ca

S_ S_
Y

(Sa)

The expression for the magnitude of F is taken to be the following:
a



Z..rn

FIGURE h. AERODYNAMIC FORCE SYSTEM
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= %)Fa Aqf(_, . A is the projected cross-section area of the vehicle,

q the dynamic pressure, and f(a, _y) a factor which is determined by

the vehicle' s configuration.

Since the aerodynamic force is dependent upon the relative

velocity or the flow of air over the missile, it is appropriate at this

time to discuss this flow. It is assumed that the atmosphere in the

large moves with the earth. This gives at all times an air mass

movement with respect to the plumbline system of

_x _E-_,

where W is used to represent any abnormal air movement desired. The

relative velocity vector in the plmmbline system is then given by

VR--_+ [_x _ -_I,

or

VRX X XI

vR_ : Y +Ylx

VRZ Z z I

_0
E_

G0
E_

E2

wx

-- _y _,

(6)

(6a)

I

In the missile system the relative velocity may be written as

V
rm

IV
I rmx I
i

= t%]%=,vI rmy [ ,

IV
I rmz I

(7)
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or in terms of the aerodynamic system variables

Vrm = [Aa]T _r' (8)

where
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V. EQUATIONS OF MOTION

As previously stated, only gravitational and aerodynamic forces

are considered. Using Newton's Second Law, the translational motion of

the center of gravity with respect to the plumbline system is given by

the following set of second order differential equations.

where

•_. _ [%IT
x : + _ F (9)

IRI_ m am'

By making the following change of variable, the second order equations

of translational motion may be reduced to first order.

(lO)

The first order translational equations thus become

: c_ [½IT
U = + _

lal_ m am. (ll)
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For convenience, the following definitions are made:

GM
g -_-

H

[%]T F.
F _ a -F' N,

m am m a

where

-- [iD ]T [Aa]T_a
F •

a

or

(12)

(i3)

m

- (CPCR + SPSYSR) C_Ca
Y

m

+ (SPCR - CPSYSR) C_ + CYSRS_Sa
Y

- SPCYCa Sa - CPCYCa - SYSaSa
Y Y

(CPSR - SPSYCR) Ca Sa - (SPSR + CPSYCR) Ca + CYCRSaSa
Y Y

(_)

Thus, the translational equations may be written as

_' _+_Y
a

(i5)
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Vl. FORMULATIONOFTHEVARIATIONALPROBLEM

The formulation of the variational problemrequires further

consideration of the constraint equations emanatingfrom

v = [%] --[Aa]Tvrm r

or

where

Vrm = [%] [¢y] I! 1

I!I [¢r ] _R

is the relative velocity vector referred to the intermediate system

located by [_r ] . The system of equations (17) is solved for _y and

_p to yield (see Appendix)

(16)

(17)

(__8)

4

SY=

V V
SP = _ rmy, CP-

VV2mx + V 2 VV2 +V 2rmy rmx rmy

- p

-bY + CVVr2 - V 2 cV + b VV 2 - V 2
rmz rmz rmz r rmz

2 , CY = 2
V V

r r

-IT <¢ <_
-- y--

(19)

(20)
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The roll angle, _r' is given by

VRz
SR-- , CR--

+v z +V z

-_ "< _r <-_

(21)

and is obtained by limiting _y and % to real values. (See Appendix.)

As expressed in the problem statement, it is desired to determine

from a given class of allowable trajectories the best one yielding

mission fulfillment. This is accomplished by finding among all sets of

admissible control a(t), ay(t) which transfer the vehicle from _o to

XT one for which the functional:

tT

D-- St0 [DRAG] 2 dt (22)

takes on a minimum value. In this analysis the word drag will be used

synonymously with aerodynamic acceleration. Thus from Equation (15),

[DRAG] 2 = F' N • F'-_ = (F_) 2 N • N = (F&) 2a a (23)

and

t T
D = #rt (Fa)2 dt _ D = (Fa)2

o

The Pontryagin H function may now be written as follows:

H -- X I • X + _ii • u + k7 O ,

(24)

(25)
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where

I

Xil

x21and II

The k i(t), i = i ...7, are the'auxiliary variables that are

incorporated in the same manner as the Lagrange multipliers in the

classical calculus of variations. Substituting into H from Equation (15)

results in the following:

H = [I " _ + [II " [Fa _ + g i] + XT(Fi)2.

The expressions for the auxiliary variables are obtained from the H

function and take the following form:

8H F' 8(ili " _) 8F'
= - + ({II " [) a

(26)

(27)

+ [II g + ([II

 (q)2
• Z) a--_g+x

8Z 7 8 i

- 8H _ + F' 8([ii " _)_ _ +(;
- X II 8{ I a 8 [ II

• 8H
-k -- -0

7 8D

+ X
7 _u

8F'

an

(28)

(29)
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It is implied from Equation (29) that k 7 = constant. The equations to

be solved for the control variables are given below.

8F'

H _ F' (_ . ____) +(_ ._) a

Y Y Y
(3O)

 (F'a)2
+ k -0

7 8
Y

_H F' (_ _ _ . _) _F'
-- a II ' "8--'_)+ ([ II 8r,a

(31)

 (Fi)2
X? = O

Equations (15) and (19) through (21) are the constraint and

definition equations which must be satisfied, and Equations (27) through

(31) are the characteristic equations. The complete set of algebraic

and differential equations needed for the problem solution have thus

been found. The desired minimum drag re-entry path will thus be one

which _atisfies all the aforementioned equations. A closed form solution

to this set of equations does not seem probable nor is the time spent in

searching for such a solution justifiable since numerical solutions via

digital computers can be achieved to almost any degree of accuracy.

6
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Vll. COMPUTATIONAL PROCEDURE

Functional Analysis :

When composing a computational procedure, it is sometimes found

convenient to write the equations in functional form. Listed below is

such a set.

_r --_r (_)

u_u (_,u, _, _, %y)

H--H (x,u, {, _, _, _y)

8H - 8H (x, u, _, _ a, 0

Starting V_ues:

m

GM

R
o

A

7O
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. ----"

Xo

Zo
b

X
cp

= Ycp

cp

u

v

W

'X1C
m .

! )'- 4c

5c

L)

Atmospheric tables for p as a function of altitude.

Atmospheric tables for _ as a function of position.

Aerodynamic tables for f(_, e _) as a function of (e, ey).

"N" Line Computation:

(I) Using starting values, iterate Equations (30) and (31)

simultaneously for _ and _y.

(2) Use (e, ey) from Step (I) along with starting values to

compute the following in order.

@r from Equation (21)

_y from Equation (20)

_p from Equation (19)

from Equation (15)

H from Equation (26)

I from Equation (27)

k II from Equation (28)
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(3) Integrate to obtain the following:

u for _ for

for
I I

k for
II II

(4) Use integrated values from Step (3) as star&ing values for

the n + I l_ne.

Cut-off Criteria:
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Vlll. CONCLUSION

TheMaximumPrinciple has been employedto study the problem of

minimizing the integral of drag squared.

Thecut-off criterion on the trajectory was IVRI_ Mach2. Th_s

is a reasonable criterion since the expression used for the aerodynamic

force is valid only for velocity _ Mach2. If the desired terminal

position is not attained simultaneously with the cut-off criterion, then

a different set of initial auxiliary variables must be chosen. This

procedure must continue until all of the terminal conditions are simul-

taneously satisfied.

No procedure has been developed in this paper for determining the

initial auxiliary variables. An attempt is being madeto formulate the

transversality conditions for the problem and to apply the gradient

methodas an aid to numerical solution.

Theproblem, as formulated, is assured of a necessarybut not

sufficient condition for the existence of an optimum.
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APPEND IX

SOLUTION FOR _r' _y' AND _p

A first algebraic solution of the set of Equations (17) for _p

and _y yields

SP =
-a Vrmy + V --V V2 + V2 _ a2- rmx rmx rmy

2 2
V +V
rmx rmy

CP --

SY=

aV +V _V 2 +V 2 -a 2
rmx - rmy rmx rmy

2 2
V +V
rmx rmy

-b V + cVb 2 + c 2 - V 2
rmz - rmz

b 2 +c 2

(A2)

(A3)

CY=

c V + b V b 2 + c 2 - V 2
rmz - rmz

b 2 + c2

First, _p and _y are limited to real values by setting a = O.

It is easily shown that

A

V 2 + V 2 - a 2 = b 2 + c 2 - V .
rmx rmy rmz

The choice a = 0 is allowable because of the dependency of the set of

(m)
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Equations (17). As only two of the angles are required to 16cate a

vector in three-space, no unique solution exists for _r' _p' and _y.

However,a = 0 provides that

VRx VRz
SR = , CR--

m rm

Now_ the corresponding values of _p and _y must be unique. To settle

the choice of sign in Equations (111) through (Ah)_ it is recalled that

the determinants of the rightihanded rotation matrices [_y] and [_p]

must be equal to unity. This eliminates two of the four possible sign

combinations in Equations (AI) and (k2). The choice between the two

remaining possibilities is made according to the relation between the

aerodynamic coordinate system and the relative velocity vector VR set

forth in Section IV. The resulting equations are

(AS)

V
rmx

SP = , CP =

VV2mx + V 2rmy

V
rmy

VvL+v rmy

-_ _< _p<_

(A6)
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and

SY=
Vb c2 2-bV +c + -V

rmz rmz
b2 +c 2

CY=
c V +bVb 2 + c2 - V2rmz rmz

b2 +c 2

-W --<_y<W

An additional result of setting a --0 can be seen from Equation

b= VRy

Thus, b 2 + c 2 = VR 2 = Vr2 and (A7) becomes"

(18) as

}

(A7)

(A8)

SY--

-b V + c \! V 2 _ V 2
rmz v r rmz

2
V
r

CY--

cV +bVV2-V 2
rmz r rmz

2
V
r

-w _<_y<w

The limits on _r' _p' and _y are chosen to provide a full

revolution of freedom and eliminate any excess motion.

(_-9)
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Introduction

The earliest theoretical approaches to optimal guidance (Refs. 1 and 2)

lead to computational methods for synthesizing linear feedback systems fur-

nishing an approximation optimal to second order in an expansion about a

given optimal reference trajectory. While the resulting systems fulfill their

theoretical promise in providing high performance, terminal accuracy is

found to be wanting, and the practical mechanization of the feedback law is

encumbered by the need for storing time-varying "gains". Recent studies of

the terminal accuracy problem (Refs. 3 and 4) indicate that a large improve-

ment may be realized by transverse state comparison with the reference tra-

jectory and suggest that this relatively simple procedure may be more effective

than the addition of quadratic terms in the feedback approximation.

The present paper reports an idea for a synthesis scheme in which an

ensemble-averaged second order approximation to the performance index is

minimized with respect to certain parameters. These parameters include the

coefficients in three polynomials in time which are used in place of general

time-varying functions. Polynomial approximations are used for (1) the con-

trol programs of the optimal reference trajectory; (2) the state variable his-

tories of the optimal reference trajectory; (3) the feedback gains for the

assumed linear feedback control system. Additional parameters to be opti-

mized are the coefficients in an assumed linear rule for termination of per-

turbed trajectories, The treatment is based upon the statistical methods

pioneered in Refs. 5 and 6 in connection with synthesis of optimal midcourse

guidance approximations.
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Formulation of the Problem

The dynamical system under consideration satisfies

x = f(x,u,t) (:)

where

x(t)

u(t)

t

f

(')

is an n-vector of state variables

is an m-vector of control variables

is the independent variable (hereafter called time}

is an n-vector of known functions of x, u, t

d
is _()

The system operates over a finite time interval. The initial time t is assumed
o

fixed, but the initial state is a vector of random variables with speciticd en-

semble average properties. The problem is to minimize the ensemble average

of a given function of the terminal conditions*

• j = e [_ Ix( tf ), tf] } (2)

subject to the constraints

e£_b[x(tf),tf]} = 0 (3)

F_[(_bJ[x(tf), tf]) 2] = N j (4)

gj .thwhere is the j component of any vector g. J is to be minimized while

specifying the means and variances of the functions _bj.

* tf is the terminal time
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m

It is assumed that nominal* control programs u(t) have been determined

which minimize _x(tf), tf] while meeting constraints _ _x(tf), tf] = 0. Thus,

x = f(_, _, t) (5)

(6)

_f
bu - 0

with boundary conditions

(_2f__ _ 0 is assumed)

bu 2
(7)

to, x(t o ) specified (8)

(9)

(10)

(1l)

where ( )T is the transpose of (), the ij th element of a matrix 5gg
• by _

5g 1
g and y both vectors, is . With u(t) and x(t) specified, the

b yJ

analysis will be carried out in.terms of the perturbation quantities 5u(t)

and 8x(t), where, by definition

u(t) = if(t) + 8u(t)

x(t) = _(t) + 8x(t)

(12)

(13)

* (-) is ( ) evaluated on the nominal path.

69



The minimization of J is to be carried out with respect to a number of

parameters of the problem. One set of these parameters appears in the rule

for terminating trajectories which must be imposed because there is no auto-

matic way to determine tf on each member of the ensemble. Suppose that the

termination rule is described by

_[x(t),tJt=tf = 0

where _ may be any once diffcrentiable function of x and t. Consistent with

the second order approximation theory to be employed, the optimality of the

reference trajectory leads to the result that the most g(mcral _l relevant in

the analysis is a linear function of x and t. To first order, then, (14) may

be written as

0 = _[Y(tf),tfJ + [-_x 5xJt=_f + _dtf

where, by definition,

_x x + -_- =if

Since tf = tf + dtf, the terminal time may be determined from (15) provided

J 0. This is simply the statement that _ must not be a constant of the

motion if (15) is to give a solution for tf.

Solving (15) for dtf gives

where, by definition, _x t=tf
[ _(tf), tf ]

(14)

05)

(16)
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[2 and fl are the parameters to be optimized:
x

of generality in assuming _ , - 1.

il. is (,vidont there is no loss

Thp. system controls for each member of the ensembl(, are asmtmed to

satisfy

N Ng Nx..U

ti 0u(t' : _. a. + _ b. lx(t,--_j Ck
1 .1

i::0 j-0 k 0

(17)

where N N and N are specified, a i, bj, c k are unspecified. The firstU' g X

term in (17) is the polynomial approximation to u(t). The second term is the

• t k
result of an assumption that the feedback control is linear in x(t) The Zc k

is the polynomial approximation to x-(t). Zb. t j is the assumed form of the
J

feedback gain. The most general linear feedback would use an mx n matrix,

say A(t), of unspecified functions of time. Thus, the formulati(m used here

replaces the most general linear feedback control system, which would require

storage of iT(t), _-(t) and A(t), by a linear feedback control utilizing poly-

nomial approximations. It may be verified by inspection that a.,1 b.,j ('k' arc

mx 1, mx n, nx 1 matrices for each i, j, k respectively.

The. problem, then, is to simultaneously choose all parameters _, _x'

a, b, c to minimize J while satisfying the sJ mean and variance constraints.
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Derivation of Necessary Conditions for the Optimal Parameters

The approach used here will be to adjoin all relevant constraints to the

performance index by means of Lagrange multipliers.

J = _[g_[x(tf),tf]] + vT_[_[x(tf),tf]] +

+ _i f(k T+ 8kT)(f-x)dt

O

Hence,

2

1-.I 
2 j kj_((*J[x(tf);tf]? _ - NJ_

(18)

The essential approximation of the analysis is the assumption of "small" per-

turbations. The ensemble of system trajectories is treated by expanding about

the nominal path and keeping terms through quadratic in 8x and 8u, but

dropping higher order terms. As an example:*

_{_0[x(tf),tf]] = _p[x(tf),tf] + [_(dx)+ _-'_(dt)]t=tfbt

l_dxT_2_0dx dxT _2"_ dt+dt _2_ dx+dt_-_dt_

+ 2 bx 2 + bx bt _t 5x _t 2 t:tf

(19)

Evaluation of (19) requires evaluation of

But

d [x(tf)] -- x(tf) -

= 8x(tf)

tf

tf

x(T) d1" (20)
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x(r) = _(r) + 8x(Tl

= x(tf) + x({'f)(r-tf) +

Ibf 5f "]+ 7x_X + _uSU +
t=tf

(21)

Substituting (21) into (20) and dropping terms above second order gives

d[:x(tf)] = 8x({f)
• 1 ""

+ x(tf)dtf + _- x(tf) dtf 2

+ _x 8x + _u 8u dtf

t={'f

(22)

Everywhere in (19) that dtf appears it is replaced by _ + [Ix 8x(t-f).* This

makes all terminal functions depend only on quantities evaluated at t :: tf.

The x terms in (18) are integrated by parts. The Lagrange multipliers

v are written

v=V+dv (23)

where dv is assumed to be of order 5x(tf). It is further assumed that the

Lagrange multiplier functions 8X(t) are of order 8x(t).** The Lagrange

multipliers k. are assumed to be order one. These assumptions all rely on
J

the basic assumption that the entire ensemble of trajectories lies within an

adequately small neighborhood of the reference path.

Expansion of (18) through second order and grouping similar terms gives

* _ is assumed to be the order of _[Sx(tf)].

** Note that 8),(t) is different on each member of the ensemble, just as

6x(t) is. ),(t) is the same for each member, given by (6) and (10).
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I is the identity matrix

 _(Ax +  A-I
(') = 5x 5t

•T _20 x + -T
(") = x x _x 5t

5x 2 5x 5t 5x 5t 2

and all derivatives are evaluated on the reference path.

Using (12), (13), (17), 8u(t) may be written as

6u(t) = u(t) - _(t)

N u Ng N x

it i _Sx( ) x(t tk_= _ a. - _(t) + _ bjt j t + )-_ c k _

i=0 j=0 k=0

(25)

The following purely symbolic notations are introduced for convenience:

N u

tia. = at
1

i=0

N_bj t j = bt

j=0

i x

_c k t k = ct

k=0

With these substitutions 6u(t) may be written as

8u(t) = at -u(t) + btESx(t) + _(t) - ct]

8u(t) from (26) may be substituted into (24), giving J as a function of _ _x'

a, b, c and other quantities. A necessary condition for optimal choice of the

unspecified parameters is that dJ be zero for arbitrary first order changes in

the parameters.

(26)
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By virtue of the optimality of the reference trajectory, all first order

terms in dJ, and the 8u(tf) term also, drop out. Thus, dJ is composed

entirely of second order terms an4 by a straightforward development, may be

written as

dJ =

T j

j=l

.J
j=l t :tf

+ {[_x + _ _f _ P

j=l

P

+_.kj(_j)2]+dY T_}t: d_+tr{X[( b'@fSx/+\_x/CSf_Tcs¢_Tksx/+GT_x
j=l

__P (_xJ+ _J[_x) T_j]+_.(Sx )[_,_, kj(_j)2 dY T_]}t=_fd _
+ _kj + x

j =i j =i

f{[ T(_ 5f bt)+ 5xT( 52H 52H bt (bt, T 52H
-- +

+6 8),T+ 6X \Sx + _ 5x 2 + _ 5uSx
o

+
T 52 H

(bt) T52H bt)+[at-_+bt(_-ct)] (_uS-x
5u 2 5u

Nu 52 H+ [°z
i=O

]TS__ + + T _Sf] i+ [at -u + bt(x-ct) (sTL _ )_-=, t da i
5u
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j=0

52 H

_x _u
+ [at - _ + bt(Sx + _ -ct)] T _2H

5u 2

Nx 52H

k--'0

+[at-u+bt(Sx+_-ct)] T _2H

5u 2

where, by definition, tr stands for trace and

x(t) = e[Ox(t) 8T(t)]

(27)

Setting dJ = 0 provides necessary conditions for extremizing choices

of the control parameters. The Lagrange multipliers 5 ), satisfy

Bf _ 52H H
_X + _ubt]Sk + l_ +(bt)T 526i,+( 5f

5x 2 5u 5x
+ _bt + (bt) T bt)Sx

5u

( 52H --)[at-E+bt(_-ct)] = 0+ 5 xb------u + (bt)T 52H
5u 2

(28)

T T T

+ 2(5f 5¢ 5"¢ T _ nT
,Tx)(Tx)_x + (_)_x + _(_)+ x ¢:x

P k(B_J
+ _ j\ 5x

j=l

++JR/ sx x

P . / 5_bJ _j T

j=l

+

t =tf

(29)
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Because 8x(t) is a vector of random variables, 8),(t) is also. Neither can

be used computationally. Itowever, it may be verified by direct substitution that

8),(t) ,. L(t)Sx(t) + _(t) (30)

where L(t) and &(t) are the same for every member of the ensemble.

(Sf 5f )T L( 5f 5f ) 52H (bt)T 52H+ _x + _ubt L _ \5--_+ _-ubt +
5x 2 5u 5x

52 H
+ --SxSu bt + (bt)52HT__ bt = 0

5u 2

(31)

(Sf 5f ; ( 521t (bt)T52--H2)(at _ bt(x ct))i + _x+ _ubt _ + 5x5-----_+ - + -
bu

= 0 (32)

The boundary conditions for L and _ are evident by inspection of (29).

To obtain the remainder of the necessary conditions resulting from dJ = 0,

it is necessary to develop the differential equations for _( 8x ) and for X.

First, it may be noted that E(8x) appears only in terms that are second order,

hence it need be calculated only to first order. The linearized perturbations of

(1) with 8u(t) from (26) immediately give

d E(Sx)= (bf 5f ) 5fd-_ _x + _ubt e.(Sx) + _u[at-u + bt(_- ct)]
(33)

It is convenient to define

5x ffi e(Sx) + 8x (34)
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so that

x = e(_)e(6 T) + _. (35)

x = e[6x

Then, by direct substitution

( )_ _(_x_5_f bt X + X 5f + _ubtx= _x+au

(36)

(37)

The boundary conditions for _(5x) and X are given by

g[Sx(t)], specified

g[Sx(t) 5T(t.)] = X(t), specified

2(n2 NThere are thus + n) differential equations for g(Sx), X, ¢, L and

corresponding boundary conditions, half at t and half at tf. The conditionso

at tf involve the Lagrange multipliers dv and k. ; constraint equationsJ

(3) and (4) furnish the additional required 2p relations.

(38)

(39)

From (16) it is clear that _ is a bias in the choice of dtf.

gives added flexibility because the differences of at and ct from

respectively cause g [Sx(t)] to be non-zero. Applying dJ = 0,

explicitly solved for in terms of other parameters of the problem:

V_._+7x_+(Tx)+ _,_'(_x+ .x)__`°x,+J
= _ j-"=l

Such a bias

P

j=l

and

may be

(40)
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Thus, Q need not appear as an unknown in any numerical optimization pro-

cedure.

The parameters t_ may also be solved for, from dJ = 0,
x

quantities evaluated at t = tf:

in terms of

Q
x

p
j--1 j=1

P

j=l

After utilizing (40) and (41), the unspecified parameters are a, b, c. These

must satisfy integral relations which result from dJ = 0, for arbitrary small

changes da, db, dc.

(41)

=tf

f{_ 8 T) 52H + [at-u+bt(_-ct)] T _)2H + [E(6T)L _TJ_f_ti
-- +

0 = ( 5xS-----u 5u 2 _u) dt

0

i =O, 1,2,--,N
U

(42)

tf _ 5T)3 52 H 52

'_t {[X+(x-ct) ( _+ [X(bt)T+E(Sx)[at_u+bt(__ct)jT 5u 2H

O

+ (_ - ct)_ ( 8 _"_'x_)(bt) _ + (_ - ct ) [at - _ + bt(_ - ct)f}n" 52
H

2
5u

÷ (Ix + (_-ct)E(sT)JL + [_(Sx)+ (x-ct)]_T)_u f) t j dt

j =0,1,2,--,N
g

(43)
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O

+ [at-_+bt(_(Sx) +_- ct)_r 52H

_u 2

k ;0,1,2,- -,N
x

(44)

The parameters a, b, c nmy not be eliminaled alg(._braically because other

quantities depend on them. The necessary conditions involving _(5x), X, _,

L, a, b, c are all interlocked. This is characteristic of dynamic system

optimization problems with control parameters. Although such problems are

seldom easy, the one considered here presents no new conceptual difficulties.
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An Alternative Appr0ach to the Necessary Conditions Derivation

This analysis is based on second order expansions and Is closely related

to the second variation guidance schemes of Refs. 1 and 2. There, for a single

perturbed trajectory, the second variation of the performance index is minimized

subject to satisfaction of the x = f and _ = 0 constraints. One proceeds by

• making stationary the function @ = _ + _r_, where properly chosen U will

lead to satisfaction of the terminal constraints. The second variation of @,

from Refs. 1 and 2, .is

_2@ dt+dt _2@ _2_
x _--'_ _ dx + dt dt

_t 2 Jt

Since the reference path satisfies all the constraints, it is sufficient to adjoin

the linearized perturbation constraints

6x - bf 6x + bf
_x _ _u

(45)

(46)

d_b = dx + -_dt = 0
t= f

1
Then, given 6x(t), 6u(t) is chosen to minimize 2J2 while satisfying

constraints (46) and (47). This leads to a linear feedback relation

6u(t) = - A(t) 8x(t)

(47)

(48)

It is tacitly assumed that x(t) and _(t) as well as A(t) are "stored"

(available to the guidance system).
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The significant operational simplification of neighboring extremal guidance

introduced in this paper is the substitution of a relatively small number of poly-

nomial coefficients for the functions u(t), x(t ), A(t). The general functions of

time would require tables of values vs. time in operation with a digital computer.

Use of polynomial coefficients instead may be expected to greatly reduce the

storage requirements.

An additional advantage of the polynomial approxi .mations is that the difficulty

A(t) -- ® as t -* tf disappears. The polynomial Z bjt j will certainly be well

behaved in the neighborhood of t = tf. Thus, the need for a transverse state corn- .

parison, so important for neighboring extremal control, may become less sig-

nificant in analyses conducted along the present lines.

It is, of course, necessary to satisfy the constraint (46) in any (small per-

turbation) analysis. It is not possible, however, to satisfy (47) for arbitrary

5x(t ) with the polynomial approximations. Hence, the use of a statistical per-

formance index is not only appropriate, but even unavoidable. The alternative

approach to the derivation of the previous section is to consider minimizing the

1 J2" Constraints on the mean and variance of the _J'sensemble average of

[equations (3) and (4)] are imposed. Because these ensemble averages involve

only the mean and covariance of 8x(t), it is sufficient to use the differential

equations for 8(5x) and X in place of (46). Thus, (24) is fully equivalent to

1 j2 ] dyT_{d@Lx( tfj}+_kjS{d_bJ[x(tf), + ++ _u bt)_(Sx)J = e[_ tf), Vx
j=l O

+[at-_+bt(_-ct)]- _8(5x) +tr [__x+ _ubt)X+X(_x+_ubt) T- dt

(49)
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Here _(t) and L(t) appear as a vector and matrix respectively of Lagrange

multiplier functions.* _(t) is the vector adjoint to 8_.[Sx(t)], Lit) is the

matrix adjoint to 5X(t). All the necessary conditions of the previous section

may be obtained by requiring J of (49) to be stationary with respect to arbitrary

small changes in the unspecified parameters.

* Since L multiplies symmetric matrices in (49), it may be assumed symmetric

with no loss of generality.
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Possible Additional Complexities

The analysis as presented allows disturbances only in the form of pertur-

bations in the initial state variables. It also assumes that the state is known

perfectly at all times. Both restrictions may be relaxed while still retaining

the polynomial approximation approach.

Disturbing influences may arise from perturbations of system parameters

from their reference values. For example, the thrust and/or fuel consumption

rate of a rocket vehicle may deviate from its pre-planned value. To allow for

this in the analysis presented here, such system parameters may be regarded

as state variables with zero time derivatives. Thus, a parameter deviation

becomes an initial state variable perturbation.

Time-dependent random forcing functions may be added to the analysis if

their means and covariances are known, although serious complications may

arise if the noise is appreciably correlated in time. The main effect with zero-

mean white noise would be to add a term to )_. The other equations would be

unaltered, but any numerical solution might be substantially different.

If state estimation errors were not considered negligible, it would be pos-

sible to include them by considering the estinmtor characteristics. A linear

perturbation estimator would be consistent with the degree of approximation

used here. The estinmtor gain nmtrix would play a role analogous to the feed-

back gain matrix. It would be approximated by a polynomial analogous to _b. t j.
• j

The polynomial coefficients would bc added to the others, all to be chosen

simultaneously to optimize the system ensemble average performance.
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Computational Considerations

The preceding analysis has been devoted to problem formulation and

development of first order necessary conditions for a minimum. Computa-

tional determination of the control parameters which actually furnish a mini-

mum represents a second phase of study. It is clear, however, that any of the

methods applicable to the solution of Mayer/Bolza variational problems appear

likely to be equally suitable to parameter optimization problems of the present

type. On the basis of experience, the writers are favorably inclined toward

the use of gradient methods (Refs. 7 and 8) and methods of the second variation

type (Ref. 9), and in this connection it should be noted that the usual require-

ment for rapid access storage of control variables versus time is eased in favor

of a somewhat less severe requirement for storage of parameter values. With

the second order method of Ref. 9, it appears that parameter optimization will

entail the solution of fairly large linear algebraic systems, and hence that

greater attention than usual must be given to error propagation problems.

Concluding Remarks

The present paper has sketched in some detail an ensemble averaging

approach to optimal guidance polynomial approximations. Conclusions on the

merits of this approach must be deferred until numerical examples of syn-

thesis procedure have been worked and system simulations performed. In

connection with the problem of guidance system mechanization, it will be of

interest to investigate the use of transverse state comparison or some similar

mode of comparison employing polynomial representation.
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Scalars

NOMENCLATURE

a

e

i

P

r

el,

A8

/z

Vectors

e_

I

N
m

r_

u_1

s2, s3

SemimaJor axis

Magnitude of step s£ze

Eccentricity (magnitude of _)

Inclination

Semilatus rectum

Radius to satellite

Scaling parameters

Transfer angle (true anomaly difference in transfer orbit

plane)

Gravitation constant (9%3_.50100 mi3/sec 2)

Angle from reference axis to departure position in initial
orbit

Angle from reference axis to arrival position in terminal
orbit

Argument of perigee, angle from reference axis to perigee
point

Orbit shape and orientation vector

Unit vector in gradient direction

Impulse vector

Unit vector denoting reference direction (line of intersection

of initial and final orbit planes)

Geocentric satellite position vector

Unit vector directed toward point of departure from initial
orbit
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Vecto,rs

U_2
V

W

Subscripts

i

2

t

tl

t2

Unit vector directed toward point of arrival in final orbit

Velocity vector

Unit vector directed along orbit's angular momentum vector

Initial orbit

Final orbit

Transfer orbit

transfer orbit departure point

transfer orbit arrival point
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I. INTRODUCTION

In previous papers, (i, 2, 3) the authors discussed the properties

of function spaces associated with optimum two-_mpulse transfer between in-

clined elliptical orbits. An impuTse function contouring technique which

presented the nature and structure of the entire function space was utilized

to identify all possible regions of a given function which would yield

optimum transfer orbits.

Contouring proves adequate for locating minima, and for providing

insight, but it generally does not provide required numerical accuracy. This

is true for many of the most interesting orbit pairs wherein the difficult

phase of numerical optimization occurs during the final convergence. These

particular functions are comprised of long, narrow "valleys" containing one

or more minima. It is therefore necessary to employ an alternate technique

to compute precise optimum orbital transfer circumstances for use in engineer-

ing design studies.

Experience with ordinary steepest descent processes (_) led to

numerous frustrations and amplified the need for the more powerful adaptive

steepest descent technique presented here. This rapid numerical method has

been applied successfully to the minimization of numerous different orbital

transfer function spaces. The method also has obvious application to a large

class of problems which require numerical determination of the extrema of

a function of 3 or more variables.
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II. TWO-D_ULSE. ORBITAL TRANSFER FORMULATION

Adopting the notation of Ref. i, consider a two-impulse transfer

process between an initial orbit with elements Pl, el, el, i and a final

orbit defined by p2 , e2, _2" The formulation assumes Keplerlan orbits and

results from choosing the final orbit as the reference plane; i is the rela-

tive inclination of the two orbit planes (cos i = _l " _2, where W_ and E2

are unit vectors directed along the angular momentum vectors of the initial

and final orbits). For coplanar orbits, the reference direction (N) is arbi-

trary; but for inclined orbits N is defined as the llne of intersection cf

the two orbit planes (N = W2 x E1 / Iw2 x Ell ).

For the general case, there is a three-parameter family of trans-

fer orbits Joining any two specific orbits. The angles from the reference

]_ne to departure point (_l) and to arrival point (@2) are a natural choice

for two of the three independent variables, since they, along with the Eiven

crbital elements, specify position and velocity in the known orbits (Fig. 1).

The semilatus rectum (Pt) of the transfer orbit was the third parameter used

for this study. It was chosen since it simplified the structure of the im-

pulse function, I (_i' _2' Pt )" (5)

TRANSFER GEOMETRY

Unit vectors (_l and 4) and radius vectors (El and E2 ) toward

the departure and arrival points may be computed from _l, _2 and the elements

of the initial and final orbits:*

[cos sin cosi,sin sini] (1)

_he subscripts i, 2, and t denote initial, final and transfer orbits.
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cos _2' sin _2' O]
(2)

r_j = PJ ] Uj J =, 1, 2 (3)
1 + ej cos (_j - w j)

Unit vectors normal to the three orbit planes are defined as follows:

WI = [0, - sin i, cos i] (4)

= _l x u_2/ I_l x _21 _l x _2 # o (6)

Two vectors that define the shape and orientation of the initial

and final orbits complete the transfer geometry: (6)

= e [ cos _ sin _ cos i sin _ sin i I J = l, 2 (7)
_J J j, J J' J JL J

Tha t_le anomaly interval traversed in the transfer orbit ( A @) may be

determined directly:

• < A @ < iSO ° (8)_os ao = (_ _) o°

No generality is lost if the true anomaly interval is limited

to the first two quadrants. Although this does restrict the problem to

"short transfers", if the si___of the velocity vectors in the transfer

orbit are changed, the "long transfers" may be computed. Thus, in order to

determine the absolute minimum'impulse transfer between two elliptical orbits,

Jt is necessary to compare the minima found from all the short transfers and

all the long transfers.
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D{PULSE COMPUTATION

The function to be minimized is the total impulse for the two-

impulse maneuver:

T = I%1 + I-T21 (9)

where

I
-1 :+--h_ - 5. (]o)

T_2 = _v2-T-$2

(_'_en a double sign _.s used, the upper sign refers to a "short transfer").

Velocity vectors in the initial and final orbits at the departure

and arrSval points (El and _2 ) and the corresponding velocity vectors in the

trarsfer orbit ([tl and Vt2 ) are computed as follows:

(L2)

(13)

_?. = V/-E_t (z + ".u_l)
(L_)

_2 : '_t (z - z4)
(15)
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wh ere,

- "-_ -1

z = _ tan ( _ o / 2) (17)
Pt

Fqs. 12 - 17 may be derived from Eq. 3.26 of I_rget. (6) The final impulse

equations are obtained from Eqs. I0 - 17 by substituting Eq. 6 and perform-

ing several algebraic manipulations:

I = + [v + zU1] - V1 (18)
"i --

Impulses corresponding to long and short transfers are compared,

and the combination producing the lesser impulse is used for the remaining

computations. Because of the nature of the _articular functions being ana-

lyzed, regions neighboring each local minimum are usually comprised entirely

of either long or short transfers.

IMPULSE MINimIZATION

Minimization of Eq. 9 by a steepest descent technique requires

computation of the gradient. Upon differentiation, Eq. 9 provides the

following expressicns:

(-q • dA) (2 " d!2)
dl = +

l-Ill ILl
(20)

99



NORTH AMERICAN AVIATION, INC. _ SPACEand INFORMATION SYSTEMS DIVISION

or_

(-_• _-_) (_. ___-_)al apt _pt
- + (2z)

apt IAI I-Z21

( °I1) ( _-_)_I -I1 " _--_1 I "-2 0--qE1
= I_Ill + 1_I21

(22)

= I-Zll + 141
(23)

The above expressions may be expanded as follows:

_A + _-Vtl _h
OPt 0 Pt OPt

(2_)

-_2 _ -vt2 _%
- T - +

a Pt a Pt _ Pt
(25)

_A + a&z aVl
(26)

= at2 -T6_ (27)

a_ a&2 a
(28)
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aI-2 = ; avt2 + °v2 (29)
E Tg2

Noting that

expression for a I / a Pt may be obtained through several algebraic

manipulations:

a Pt 2Pt I Ill I _21

a E1/ ap t and a _2/ a Pt are each zero, a simplified

(30)

Additional expressions are obtained from eqs. 26 - 29 by direct differentiation

of the vector equations.

- Pt

a csc _@ _ csc_ @ ar I

a _z rI a _i J

h
acsc& Q+ csc & Q a U-l]

I

a _l a _l J
- _i acot A Q - cot A @ a _i 1

J

aVI _ [-cos _I' -sin _i cos i,-sin _i sin i]

+ csc & @

Pt L rl L a _2
a u-2

csc _ @

%

+ - Pt 1h[( g a csc A @ _ Pt

a _2 r2_

(31)

(32)

a r2

a_2

(33)

(3&)
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pt _ a _1 a _1

+__2[(_-pth ooecno - Pt__c,cno ar_
L\ )rl @ _i r12

+ Ocot _0 ]} (35)a _z

av_2= o (36)

Pt _2 a _2 rq a

-( i-P-!t > [ U-2 _)cscA@ -:- csc A@r1 0 _2 aU2]c)_2

.+ U 2 _cotA @ + cot A @ 8 U2 _ (37)

a _2 J

__._2=av _ [-cosp2, -e_n_2,o ] (3B)

The remaining undefined terms in Eqs. 31 - 38 may be computed from

the following expressions:

8 U1 = [-sin _i ' cos _i cos i , cos _i sin i]

[-,in O]

rl = rl2elsin (_i - OJl )

ar 2 = r22e2sin (_2 - o_2 )

P2

(39)

(40)

(_i)

(&2)

@ csc _0 = - csc_@ cot _9 8 A @

a _j a_j

J=l, 2 (_3)
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cotAQ .= - csc2AQ a A Q J =1, 2 (44)
a_j

The following convenient expression for

the remaining derivatives:

A @ allows computation of

A@ = COS -1 (COS _l COS _2 +

a& Q - (_sin _i cos _2

a_ 1 =

+

sin _l sin @2 cos i)

cos @I sin _2 cos i)

@

- (COS _i COS _2

- (-COS _i sin _2 +

_, sin _i sin _2 cos i)2

sin _l cos _2 cos i)

Jl - (cos _i cos _2 + sin _i sin@2 cos i)2

(&7)
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III. ADAPTIVE STEEPEST DESCENT

Since setting Eqs. 21, 22, and 23 equal to zero yields no general

analytical solution, one is faced wlth numerically solving an ordinary

calculus problem requiring the minimization of a function of 3 variables.

Successful use Of a numerical search which stepped in the negative

gradient direction was reported in Refs. 4, 7, 8, and 9. However, this

procedure proved to be inadequate for the more sensitive function spaces.

Attempts to employ Newton-Raphson methods were similarly frustrated by the

nature, structure, and multiplicity of minima of typical impulse function

spaces.

The present "adaptive steepest descent" procedure effectively

overcomes the convergence and accuracy limitations of the previous methods.

A numerical search employing Eqs. 1 - _7 is terminated when the following

necessary conditions for a local minimum have been achieved:

_I _ I _ I

During the n'th step of the search the gradient vector is computed

and the n + l'st coordinate vector is determined as follows:

-_i "_I Sl gl

= - s2 g2 J = i, 2, or 3_2 _2 _ 0 -- 0
sj

Pt Pt
0 0 _ g3n_l n

where a is the current magnitude of the step size, the sj are variable

scaling parameters, and gl ' g2 ' and g3 are the components of a unit vector

(4_)

(49)
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in the gradient direction. Note also that the scaling matrix is normalized

relative to one of the scaling parameters. Eq. 49 is employed to construct a

sequence of points at which the impulse function, I (_l, _2 Pt ), is evaluated.

An additional constraint on the process requires that the sequence of

impulses { I (_l' _2' Pt)n } be monotone decreasing.

The control logic for the optimization process is rather simple:

(1) If the inequality

I (@i' _2 Pt)n + 1 < I (Ol, _2' Pt)n (50)

is not satisfied, a is decreased and a new coordinate vector

(_l' @2' Pt ) n + 1 is computed. Thus, the n'th stage of the

process is repeated until Eq. 50 is satisfied or a _ G, • << O •

(2) Similarly, a is decreased if Eq. 50 is satisfied during each

of a successive number of stesps_

(3) The scaling parameters (sj) are decreased each time a

corresponding component of the gradient vector changes sign.

The process control philosophy is clearly an unsophisticated trial

and error learning procedure. It does, however, provide a rapid and reliable

method of handling the inevitable scaling problems associated with steepest

descent or gradient methods. While it is true that more exact methods for

determining the scaling matrix are available, such methods involve analytical

or numerical evaluation of higher derivatives (lO) . For the class of functions

treated here, it is not clear that this additional sophistication is worth

the cost (analytical and programming) of implementation. The fact that only

a few seconds of IBM70% time is required to determine a typical local
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minimum is offered as further testimony to the practicality of this

simplified scaling procedure.

CONVERGENCE PROPERTIES

An impulse function space associated with a pair of inclined

elliptical orbits, (Pl = 5000 mi, P2 = 6000 mi, eI = e2 = 0.2,

_l = -90°, _2 = +30 °, i = 5°), was investigated with an IBM 7094 double

precision program incorporating the adaptive steepest descent technique. This

particular function space was previously studies in Ref. 1 by generating an

optimum impulse contour map (Fig 1). The descent paths associated with a

number of starting points have been plotted in Fig. 1. This function space

offers no significant problems and the four mlnlma predicted by contouring are

quickly established with required accuracy (13 significant figures) regardless

of the particular descent path. Table 1 contains the parameters associated

with each minimum as well as the computer time required for the shorter

descent paths.

Table 1 - Optimum Transfer Parameters

Initial Orbit Pl = 5000. mi eI = 0.2 _l = -90'°O i = 5.°

Final Orbit P2 = 6000. mi e2 = 0.2 _2 = +30"°0

Optimum _l Deg. _2' Deg. Pt, mi" Impulse, fps. 7094 time,
sec.

1

2

3

4

73.8152

4O.8343

177.8114

308.2034

187.5568

298.2634

73.6465

37.7403

6644.8_96

6617.7904

4611.8023

4592.8574

4902.65122 3852

5343.14869 3477

5393.78114 4757

5654.19120 9679

3.4

2.5

3.0

2.8

i
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Figure i - Descent Paths Plotted on Optimum-Impulse Contour Map
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Figs. 2 and 3 illustrate typical behavior of the various control

and function parameters during optimization of a function having long narrow

features similar to those appearing in Fig. _. In order to minimize impulse

in this "example the program must search down a long narrow "tube" whose

principal axis extends approximately in the _l direction. The large initial

increase in the _l scale factor (sl) allows a large _l correction to be

accomplished early in the optimization (Fig. 2). Near the minimum the "tube"

becomes more nearly "disc" shaped. The scaling parameters stablize and

maintain their general "disc" shape as the number of steps exceeds 500.

Fig. 3 illustrates convergence of the coordinate vector's components

(solid lines). Note the large changes in _l, corresponding to the maximum

values of sI appearing in Fig. 2. An additional case involving ordinary

steepest descent optimization (i.e., sI = s2 = s3 = l) is presented for

comparison (broken lines). Under this constraint the descent process locates

the center of the "tube" and then begins a very slow movement in the _l

direction. Impulse convergence for these two cases is also illustrated in

Fig. 2. Note that the adaptive method continues to minimize _ong after the

ordinary steepest descent process has essentially ceased optimization.

Although the convergence of the adaptive method appears to be quite

slow, it should be remembered that this particular function was chosen for

its difficulty. Fig. 2 also includes data for an optimization involving the

inclined elliptical orbits which produced Fig. 1. For this optimization the

impulse error (In - I_ ) decreases from l_ to lO-5 in only _0 steps.

Clearly, the method quickly adapts to the structure of any function and then

proceeds to make good progress toward the local minimum of interest.

108



NORTH AMERICAN AVIATION, INC. _ $PACEand INFORMATION SYSTEMS I)IVISION

hi
I0 _

I'-
Ll.

. 10 4

nr
O"
IZ
n- 103

IJd

Lid
cn Io_
..J

_ I0

S I

•

_ -- _-tJ'_ON AP

Z
0 I0 "2

CO
Z
i,i
:; 1.0.3

E_

n," 10-4

O
I---

ti0 -s i
u.. 0 I00
LU
_J
<_
tO

-: ", (In - L=)ADAPT IVE ._" "" ---.._

: 'y-s 
-I \

i__(in - _'eo)ORDINARY MIN. ""
-- ' (SEE FIGURE 1.1 ""v"'" - " "" ....

I I I _ I

200 300 400 500 600 70O

NUMBER OF STEPS ('n)

Figure 2 - Optimization Process (Parameter Variation)

Io9



NORTH AMERICAN AVIATION, INC. _ SPACE and INFORMATION SYSTEMS DIVISION

I00.0

ADAPTIVE
..... NON-ADAPTIVE

___ (_)n- (_l)=o, DEG

I0.0

1.0

Pn- P==, Mi.

-(i1_)==, DEG

( +z)n- (_z)==,DEG

0.1 I I I I
0 400 800 1200 1600 2000

NUMBER OF ITERATIONS, (n)

Figure 3 - Coordinate Vector Behavior During Optimization Process

II0



NORTH AMERICAN AVIATION, INC. '_ SE'ACEand INFORMATION SYSTI,_,%I.'4 I)IVISION

IV. NUMERICAL RESULTS

"ALMOST TANGENT" ORBITS

Several authors have established the non-optimality of ordinary

co-tangential transfers between elliptical orbits and one-impulse transfers

at a point of tangency. (1, ll, 12, 13) However, one easily observes that

optimum transfer orbits usually are nearly tangent to both the initial and

final orbits. This fact and certain other questions generated during prior

studies by function contouring (1, 2, 3)made the class of "almost tangent"

orbits an interesting candidate for further numerical investigation. The

existence of two locally optimum transfers between tangent orbits was

demonstrated in Ref. 1. Further investigation using the adaptive steepest

descent program has established the existence of at least three (3) local

minima in the function spaces associated with a large class of "almost

tangent" orbits.

In Fig. _, two optimum impulse contour maps for a pair of tangent

orbits (P1 = 5000 mi, P2 = 6000 mi, eI = e2 = 0.2, A_ = -53.° 1301) are

presented in order to adequately display the long narrow "valleys" which are

characteristic of this class of function spaces. Note that the scales are

greatly distorted to amplify certain details and to allow the use of a small

contour interval ( A I = O.O1 fps).

By constraining the numerical search to planes normal to the axes

of the various valleys one may develop a complete picture of the optimum

regions of a given function space. In Fig. 5 impulse is plotted as a function

of position throughout the space by first traversing the horizontal valley

(_2 _ 71° ) and then traversing the vertical valley (_I _ 71° )" In Fig.

5b a number of points (a - f) are plotted on the curve for tangent orbits. These

same points are reproduced in Fig. A to allow matching of the various
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structural features with corresponding values of impulse.

The curves appearing in 5bwere obtained by rotating the tangent

orbits of Fig. _ from a nonintersecting orientation ( _ = -53. ° 10) to a

slightly intersecting orientation ( _ = -53. ° 17). Several of these

curves exhibit three local minima. Although the impulse difference between

minima is slight and not usually important in the engineering sense, it is

necessary to isolate the absolute minimum for valid comparisons with finite

thrust maneuvers such asthe Lawden Spiral.

Also appearing in Fig. 5b are essentially straight lines corres-

ponding to one-impulse transfer maneuvers performed at the intersection point

of smallest radius. Contensou (15) and Breakwell (16) have each demonstrated

the existence of such optimal one-impulse transfer maneuvers. The problem

of finding these one-impulse maneuvers is discussed in Refs. 17 and 18 which

develop formulae for predicting the range of orbit parameters for which the

one-impulse maneuver is optimum. Figs. 5a and 5c illustrate the effect of

large rotations from a tangency condition. Note that three local minima

persist in Fig. 5a although the orbits are far from intersecting. If

intersection deepens (Fig. 5c) the function space again begins to have small

regions denoting two-impulse maneuvers which require less impulse than the

associated one-impulse maneuver. Fig. 6 further clarifies this relationship

by plotting optimum impulse for both the one and two-impulse maneuvers. The

two curves are seen to coincide over a small range of relative orientation.

INCLINED ELLIPTICAL ORBITS

The existence of optimal coplanar orbital transfer maneuvers

requiring no more than two impulses is discussed by Contensou (15) and
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(16)
Breakwell. Extensive investigation using the adaptive steepest descent

program strongly suggests that optimal transfer between classes of inclined,

non-coapsidal, elliptical orbits also requires a maximum of two impulses.

It follows that optimal one-impulse maneuvers between inclined elliptical

orbits must also exist.

LAWDEN SPIRAL VS. TWO IMPULSE TRANSFER

In Ref. 19 Lawden discusses the possible optimality of a particular

intermediate thrust spiral trajectory. Using a contouring technique the

authors of this paper demonstrated the existence of optimum two-impulse

•tr_usfer maneuvers which require less total A V than the corresponding

Lawden spiral maneuvers (20, 21) Using the adaptive steepest descent program,

these numerical results have now been expanded to give a broad comparison of

the two-impulse maneuver and the Lawden spiral.

The orbits which oscillate to the Lawden spiral are generated by

varying the parameter sin 2 @ which denotes position on the spiral. In

Fig. 7 the difference in velocity change required for both maneuvers

(I _ _ -- Z_V2_im p) is plotted as a function of position difference

between the osculation poi_.ts. A family of curves was generated by varying

sin 2 _ of the initial orbit.

In all cases computed a two-impulse maneuver which required less

_V than the Lawden spiral was found. Numerical accuracy limitations

pr_nted extending these comparisons to smaller values of _ sin 2 _ .

inte_'estingly enough, all the curves presented indicate that the difference

in v_l_ciby change increases as the 4.7 power of Z_sln 2_ , which leads to

2
a severe deparuure from the Lawden spiral &V as /_ sin _ increases.
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V. CONCLUSION

An effective numerical method for precise computation of optimum

two-impulse transfers between inclined elliptical orbits has been developed

and verified. When supplemented by previously developed function mapping

techniques, (1, 3) the adaptive steepest descent program has successfully

minimized the most difficult function spaces encountered. The complexity

of the more interesting function spaces suggests that considerable caution

should be exercised when numerically seeking the absolute minimum two-impulse

transfer.

In view of the demonstrated optimality of the two-impulse maneuver

for transfering between a large class of orbits, this proven numerical

optimization program becomes a valuable tool for use in numerous research

and engineering studies.
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I. INTRODUCTION

During the course of a continuing study of optimum orbital

transfer maneuvers (Refs. l, 2, 3, &, 5) the class of "shallowly intersecting"

orbit pairs was shown to be worthy of further study. For such orbits,

numerical data indicated the existence of one-impulse orbital transfer

maneuvers which resulted in minimum fuel expenditure; a result which has

been discussed by Contensou (6) and Breakwell (7) If one must find the

optimum transfer between a pair of non-coapsidal, "shallowly intersecting,"

coplanar elliptical orbits, it is clearly desirable to determine if a

one-impulse maneuver is optimal before proceeding with two-impulse

optimization techniques such as those described in Refs.. & and 5. Furthermore,

it is known that the impulse function spaces associated with such orbit pairs

offer a formidable and time consuming challenge to numerical optimization

(5)
techniques. This is largely because these function spaces are structured

in the form of long narrow "valleys" containing several minima. (5)

Therefore, a strong motivation for developing formulae for predicting and

evaluating these favorable orbital transfer maneuvers exists.

:].28
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II. GEOMETRY OF SHALLOW INTERSECTIONS

Consider two coplanar, non-coapsidal, elliptical orbits that are

nearly tangent and are described by the elements: Pl' P2 = p2pl

where p2 = p2/Pl > l, eI _ 0 e2 # O, w 2 = O, and w I = w _ O. For

Pl = P2 the orbit intersections must lie 180 degrees apart and

this case is therefore excluded because a shallow intersection is to be

characterized by a small true anomaly interval between the two points of

intersection, Finally, one may restrict _ to the range, 0 < w < 180 °

without loss of generality since only the angular difference between the

perigee vectors (P1 and P2) is required.

The geometry of the shallow intersection is shown in Fig. 1. Let

the line FB lie at the angle @ from P1, and let it also bisect the angle

between the two intersections (2E). If E is small, and, 0 <2E < 180°:

sin _ = e2 sin _/D (i)

cos _ = (e2 cos (u - p2el)/D (2)

cos_ = (p2 - 1)/O (3)

where,

D 2 = p& el 2 + e22 - 2 p2 eI e2 cos_ (&)

The true anomalies of the intersection points, of smallest and largest radius

are _ - E and _ F • respectively. Let the subscript "T" denote tangent

orbits and assume that the elements p, el, e2, and _ differ by small amounts

( 8p, 8el, 8 e2, 8_) from their values at tangency, and furthermore,

assume that these perturbed orbits intersect. Since the tangent condition
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requires that:

DT 2 = ( p2 - 1)2 = p e21 2 p2 eI e2 cos_ + e22 (5)

for E << I one may write

4. (6)

2 Oa
J=l

where a_ ; are the four elements: # , el, e2, and

Clearly, Eq. 5 maY be used to find the value of an element that will yield

tangency if the other elements are given.

/ a

Thus, _ _ /-2 _v -- a cosea _ 8a. (7)

J 1 _,aj= I

Although shallow intersection may be generated by differentially changing

any of the four parameters, only changes in w will be considered for

brevity in the numerical comparisons. For small changes, 8_ , one may

assume eJT = w and,

D 2 - DT2 = 2 p2 el e2 cos a_ T - cos (w T + 8a_ )] (8)

and

2
_-- 2 p eI e2 sin _ 8 _ (9)

P J 2 eI e2 sine 8_ (i0)
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III. OPTIMAL ONE-IMPULSE TRANSFER

One and two-impulse transfers between coplanar orbits have been

investigated by Ting (8), Homer (9), and l_rrar (lO) . Although these authors

did not specifically consider nearly tangent orbits Barrar does mention the

possibility of optimizing one-impulse transfer on orbit orientation

It is convenient to adopt the notation of Ref. ll, and to express velocities

and impulses in units of _ /Pl" Velocity vectors (v1 and v2) in the

initial and final orbits may then be defined as follows:

.--_/TV-_1= v_+ eI Q-I (11)

= 1 ([ + e 2 Q2 ) (12)
_2

where _ is a unit vector perpendicular to the radius at the transfer point

and _l and _2 are unit vectors perpendicular to the perigee vectors (See

Fig. 1). The impulse for the one-impulse transfer maneuver, is expressed as

follows:

j =
- P

! (1 - p ) + c_ (13)

where

C = e2Q 2 - pel q-i (14)

j2 2 c2 )2p = + (1-p +2 (1 - p ) c_. • ! (1_)
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and

• _ = e2 cos (_ - E - _ ) - pe I cos (_ - _ ) (17)

where the angles (_ - E ) and (¢ - s - _ ) are the true anomalies of

the transfer point on the first and second orbits respectively. By using

Eqs. i and 2 the angle _ is eliminated and Eq. 17 becomes:

• _ = cos____cE2 + sine ( p - i) pe I e2 sin_
D "D

(18)

where

E2 =

Finally,

j2 P

p3 el2 _ (i + p ) pe I e2 cos_ + e22

C2 + ( p l) 2 -2 ( p l) [ E2
- -- -- COS E

D

• ]( p - i) p eI e2 sin_ sine

+ D

(19)

(2o)

One can now compare the impulse for the tangent condition, (JT) , with the

impu_etwo_ of intersect_i6_ (Jl and J2 ) by changing the sign

of _ in Eq. 20. Clearly, E must be small as must 8p , 8el, 8e2, and

Noting that

.2 2
J - JT

it follows that

= (j - JT ) (J + JT ) _ 2JT (J - JT )

J - JT = l-l- [ k(-P2C2 CT2)PT2 + ( ( p -I)22 -
2iT P

COS
D p2

- 2( p - 1)2 eI e2 sin

D

2( PT - i)ET2_
+

DT pT 2
/

(21)

(CT - 1)2 
pT2 I

(22)
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If each of the paired terms ih Eq. 22 is expressed as a Taylor

series about the tangent condition the leading coefficients will involve

_p, _el, _e2, or _ . Mowever, the term involving E has in its

(...
Therefore, as long as it does not have a zero coefficient the latter will

dominate the expression as small changes are introduced. Since c can be

positive or negative it follows that for one intersection the impulse to

transfer is at first less than that required at tangency, and for the other

intersection it is greater. The intersection corresponding to -E is

the one with the smaller impulse and smaller radius--a result pointed out by

Anthony and Sasaki. (12)

If p , eI and e2 are fixed and only w is varied, Eq. 22 yields:

Jl - JT _ el e2 sinw [ 2 E2 8 _ + ( P - l) 2_ ] (23)
JT _ p + i)D 2 p

Removing E by using Eq. lO gives (for c positive):

el e2 sin_ [ E2 _2ele2 sin w _w 1 (24)
Jl - JT _ 2 _w -

JT(P + l) p + 1

The terms neglected in Eq. 24 begin with 8w 3/2, and _ has to be positive

in the direction which yields the pair of shallow intersection. Since the

sign of the coefficient of 8_

given by Eq. 25.

(Sw)m

is positive Eq. 24 has a minimum which is

= el e 2 sin_ (25)

8( p + i)z E4/D &

The corresponding values of ( E )m and impulse change relative to tangency are:

_ p eI •2 sin w

(E)m p2 _ 1 2( p + 1) E2/D 2 (26)
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IV. OPTIMIZED 180 DEGREE TWO-IMPULSE TRANSFER

Determining an optimum 'two-impulse transfer is in general a three

p&rameter problem wherein even the conditions for optimum transfer between

coplanar orbits yield extremely unwieldy expressions. By contrast, finding

optimum 180 deg. two-impulse transfer is a two parameter problem and

optimization of one of the parameters is easily accomplished. In addition,

numerical comparisons (13) indicate that optimum 180 deg. transfers closely

approximate the optimum two-impulse transfer in many cases. For these

reasons, and because simplified expressions are available for use in later

derivations, certain equations for 180 ° transfer are presented here.

Considering optimization of the transfer orbit parameter, the

departure point being fixed but arbitrary, the impulse is given by: (with

___f_ _otatioiA of__--

J3 = _/(Xl - x2)2 + (Yl _ Y2)2

where

xI = eI sin f

e2 sin (:r - oJ )
x2 = , p ....

Yl = (1 + eI COS f) IC3 - 1 I

I - e2 cos (f

Y2 =

-_)

p2 I p - I

(28)

(29)

(30)

(31)

(32)
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and,

el2 e22 sin2(_

(Jl - JT )m = - b,JT ( p + i)S E2/D 2 (27)
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where,f = true anomaly of the departure point on the first orbit,

J3 = total impulse required in units of

and,P3 = semilatus rectum of transfer orbit.
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V. COMPARISON OF ONE AND TWO-IMPULSE TRANSFERS FOR "SHALLOWLY INTERSECTING"

ORBITS

Numerical results were obtained by first determining the intersection

of shortest radius and then searching for the optimum 180 deg. two-impulse

transfer by varying the departure point. A search was initiated by de-

termining what is called a practically optimum transfer in Ref. 13. Numerical

investigations of numerous orbit pairs all yielded similar results. For

purpose of illustration three orbit pairs with very different values of

eccentricity are presented here: i) p 2 = 1.2, •1 = e2 = 0.2,

_T = c°s-i 0.6 = 53. ° 1301; 2) # 2 = 1.8, eI = 0.2, •2 =

_T = II0.37AI°; and 3) p2 = 2.25, •1 = 0.6, e2 = 0.95, _T

One-impulse and optimum 180 deg. two-impulse transfer data is

shown in Figs. 2, 3, and _. For this example the intersection producing

element variation was obtained by rotating the final orbit relative to the

initial orbit. The two-impulse curves are seen to coincide with the one-impulse

curves near the minimum, the differences between the two being in the computer

noise (8 decimal places) over a small but finite range of relative orientation.

A few points on the two-impulse curve were investigated by a fully optimized

double precision two-impulse program (Ref. 5) and these points are indicated

by the black dots in Fig. 2. For these illustrations no significant

difference between optimum two-impulse transfers and optimum 180 deg.

transfer is apparent.

An intersection-producing change in shape can also be generated by

varying eI (or e2) or p Computer studies of such cases yielded curves

similar to those of Figures 2, 3, and _. In every case the one-impulse
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transfer experiences a minimum near tangency, and in every case the

two-impulse curve coincides with this minimum as it does for the cases

presented.

Table 1 summarizes the results of using the approximate formulae

to predict values of ( 8_ )m, ( _ )m, (JT - Jl)m for the three cases

illustrated. The values indicated "(pred.)" were obtained from Eqs. 25,

26, and 27 while the values labeled "(comp.)" were obtained by a one-impulse

computer program. The predicted values show good agreement with the actual

values; even for the highly eccentric orbits.
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VI. THE LIMITS FOR EQUIVALENCE OF ONE-IMPULSE AND OPTIMUM 180 DEG.

TWO-IMPULSETRANSFER

Figs. 5, 6, and 7 present a sequence of curves for optimum 180 deg.

two-impulse transfer in the region where the two curves are identical. The

first pair of coplanar elliptical orbits ( P2 = 1.2, •1 = 0.2,

e2 = 0.2) is involved. The single impulse transfer is always at the

point of discontinuity and it is to be noted that the curves include this

particular transfer whether or not it happens to be optimum. Each graph

consists of two curves: one for which the departure point is near the

intersection point and the first impulse is large (labeled "+" and referring

to the positive scale of departure points) and one for which the arrival

point is near the intersection and the second impulse is large (labeled "-"

and referring to the negative scale of departure points). It is thus seen

that the range of values of w over which the best 180 ° two-impulse transfer

reduces to the single impulse at intersection can be indicated by requiring

the proper curve to exhibit horizontal tangent as the intersection is approached

from the proper side. (Note the scale changes which were required to plot

the various small differences.) Nearly similar sets of curves were obtained

for other pairs of orbits but are not shown. Of course, one may also cause

the set of shapes to be given by a range of values of •1 or p2 instead of

. Again a similar set of curves would be obtained, indicating a range of

values of the variable over which one-impulse transfer at intersection is

identical with the best two-impulse transfer (180 a two-impulse transfer).
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For all curves on the left of the point of intersection the small

impulse is in the forward direction since the angular momentum (proportional

to p3 ½) lies between that of the initial and final orbits while for all curves

on the right of the intersection point the small impulse opposes the direction

of motion. In addition, for every case the + curve is above the - curve on

the left and below on the right. The following condition, therefore, bounds

the optimum one-impulse transfer region:

(a) upper limit; + curve has a horizontal tangent on the right or,

(%
b) lower limit;

= O, with C3 = p + (34)

f = fl +

- curve has a horizontal tangent on the left or,

= O, with C3 = i. + (35)
f = (18°° + fl)-

To express the limit conditions determined in Section V in a more

manageable form, it is necessary to evaluate the slope (dC3/df) and use the

proper sign. In addition, restrict f to f = _ - E

in the frequently used expression.

Pl/rl = 1 + eI cos f = 1 + e2 cos (f -_ ) (36)

p2

in all equations and

I$8
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The equations become

(eI sin f- e2 sin (f-_) 5el cos f + P + 1 ]
p L p J

+ (1 + eI cos f) ( p - l) eI sin f =

l) D sine (1 + eI cos f)
2p

2) D sine (i + eI cos'f)
2

2P

(upper limit) (37)

(2p - 2 + eI cos f)(lower limit)

(38)

and cos E

and sin2_

Replacing f by _ -E , one obtains equations involving sin E ,

pZup to the third power. By substituting cos • = - l,
D

= 1 - cos2E , one obtains equations which are linear in

sin E and may be solved easily.

sine = eI e2 sine_ 2(p2 _ i) _ P - i) -D2 + ( p2 _ 1)2 (upper limit)

n G2 (39)

where,

G2

{ t(eI e2 sin_ ( p - I) ( p - I) -
D

%

- co,[D 2 (p2 - 1)2 ][p_ _ 2 eI (p - l) _/p
JJ

2 - l_ [ D2 (P- 2 _- el 2 sin2O
P

+ D el (p2 _ i) ( p - i) cos

+ e12(p2_ 1)2 co, -I (lower limit) (AO)

= 3 p2 el2 _ (p2 + 2p + 3) eI e2 cos_ + (i + 2 )e22
P

A simple iteration scheme was programmed to solve Eqs. 39 and &0. L_en

checked by using a double precision program the limiting values for

corresponded to the expected horizontal tangents in the graphs of impulse

versus departure point.
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In this development the variations in shape were made to occur as

a result of variation in relative perigee angle. The results (Eq_.._ ani IC)

however, are quite general. Thus in order to determine whether or not

one-impulse transfer may be the optimum for any given pair of intersecting

orbits one would evaluate E from cos E = ( p2 _ I)/D and then determine

whether or not sin E lies in the range sin E I to sin E u" If so, one-impulse

transfer at the intersection with the smaller radius may be the optimum

impulse transfer between the two orbits.
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VII. CONCIU_ION

A s_ries of formulae for investigating the existence and properties

of optimal one-impulse transfers between pairs of "shallowly intersecting,'

elliptical orbits have been developed and verified. In all cases tested,

each of two different two-impulse optimization programs converged upon

optinn_ one-impulse transfers predicted by these formulae. Numerical

experiments with orbit pairs obtained using Breakwell's procedure (7) have

shown that such orbits satisfy the conditions specified by Eqs. 37 and AO.

As a result one may now discover these optimal maneuvers before proceed

with two-impulse optimization procedures such as those described in Refs. 4

and 5.
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SUMMARY

A study has been made of minimum-fuel transfer and rendezvous between

neighboring low-eccentricity orbits by power-limited rocket. This study in-

cludes and extends previous work wherein only the case of transfer between

circular orbits was considered. As before, the analysis is based on the

assumption that only small deviations from &n initial orbit are allowed.

Complete analytical solutions are obtained in three different sets of variables:

(i) rotating rectangular coordinates, (2) rotating spherical coordinates, and

(3) Lagrange's planetary variables. In addition to the determination of

optimal transfer and rendezvous trajectories in three dimensions_ synthesis

of the optimal controls is also carried out in each case. The guidance coeffi-

cients resulting from the control synthesis are presented both in graphical

form and in equation form suitable for use in guidance applications.

The use of an intermediate reference orbit is found to be a powerful

method of improving the accuracy of the linearized theory. Results for

circular, coplanar earth-Venus and earth-Mars transfers are compared with

exact solutions. The linear theory is shown to provide a very good correla-

tion with exact data for all trip times of interest. _ I

CONCLUSIONS

i. Explicit solutions are obtainable for minimum-fuel transfer and

rendezvous bet_en neighboring low-eccentricity orbits by power-limited

rockets. _se solutions include closed form expressions for the optimum

thrust vector, the optimum trajcctory_ and the minimum required_uel con-

sumption in terms of boundary conditions and trip time.
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2. Synthesis of the optimal control has also been carried out for both

transfer and rendezvous between any orbit and a neighboring, low-eccentricity

orbit. Guidance coefficients for each case can be presented in terms of time

remaining to reach the target orbit.

3. Results for the case of coplanar circle-to-circle transfer between

earth and Venus indicate that the linearized equations adequately predict the

actual motion, the optimal control, and the minimum fuel consumption. There

is, as yet, no numerical data to indicate that the rendezvous equations are

equally applicable to the planetary orbits. The failure of these equations

appears to be caused by the terms representing the angular motion.

RECOMMENDATIONS

The results of the linearized analysis for earth-Mars and earth-Venus

transfers are sufficiently promising to warrant further investigation into

higher-order theories. In particular, the "piecewise-linear" theory des-

cribed herein is a relatively straightforward application of the linearlzed

equations which should include at least some second-order effects on the

motion. It is recommended that this approach be pursued because a simple

second-order solution is highly desirable.

_I_0_ DUC TION

It is characteristic of high-specific-impulse, low-thrust propulsion

systems that the source of power is separate from the thrust device itself.

Consequently, such propulsion systems are referred to as power-limited, since

thrust is restricted in magnitude by the output of the power supply, which is

in turn limited by the necessity of minimizing power supply weight.

The problem of transfer and rendezvous between neighboring orbits by a

power-limited rocket is of interest for two basic reasons. First of all, the

problem can be solved analytically, as was demonstrated in Refs. l, 2, and 3,

provided that the thrust acceleration is not constrained in magnitude and

that the proper simplifying assumptions are made in the mathematical model

of the system. The analytic expressions thus obtained for the controls and

for the optimum trajectories then provide insight into more general problems

where the simplifying restrictions are lifted. Secondly, the solution to

this problem provides a lower bound to the performance requirements for low-

thrust orbital transfer and rendezvous.

It is interesting to note that if, for the same system model as has been

used herein, the thrust acceleration is assumed constant, analytic integration
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of the equations of motion requires the evaluation of incomplete elliptic

integrals of the third kind (Ref. 4). Therefore, allowance for variable-thrust

acceleration is essential if simple analytic solutions are to be obtained.

ANALYTICAL METHOD

Description of the Mathematical Model

The phrase "neighboring orbits", as defined here_ requires that the

inclination between orbit planes be small and that the radial separation

between orbits be small relative to the semi-major axis of either orbit.

If it is further assumed that motion in the transfer orbit does not deviate

significantly from these neighboring orbits, linearization of the equations

of motion is permissible.

The analysis has been carried out in three sets of variables: (i) rotating

rectangular coordinates, (2) rotating spherical coordinates, and (3) Lagrange's

planetary variables. The rotating coordinates have been utilized previously

in Refs. 5_ 6_ and 7, while the planetary variables were applied to an orbit

transfer problem in Ref. 4.

The rotating coordinate systems are depicted in Figs. i and 2. Each

consists of an origin which revolves at satellite velocity in the initial

(interior) circular orbit and orthogonal coordinates measured from this

revolving origin. In the rectangular system of Fig. i, y' is a radial

dimension_ x' is measured tangent to the initial orbit at the origin, and

z' is a coordinate which is out of the plane of the initial orbit and is

normal to both x' and y'

In Fig. 2_ the spherical system is composed of a radial coordinate y,

an arc x, measured circumferential!y from the origin, and another arc z,

which is orthogonal to the x-y plane.

_e Lagrange p!aneta_2T variables, which are derived from the elements of

an elliptic orbit and are used in the standard variation-of-parameters

equations of ccle_'ti_ul,m(:cha_:_c_ (b_f. 8)_ are convenient because they elimi-

nate the necessity of t±'eating singularities for zero eccentricity and zero

inclination in these equations. As they are used in this study, the planetary

variables consist of the nondbr_ensionalized semi-major axis x_ = a/ao, a

circumferential distance component, x_, and the following combinations of

the remaining oz'bit_l _,.Lcmcr_t,s:

:: C S _[II W

x_ _ sin i sin Q

x_ _ sin i cos

(1)

_6o
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in that "fast" trajectories are allowed only when the linearizing assumptions

may be relaxed. On the other hand, fast trajectories are allowed in the

rectangular system because no limits are placed on the component velocities

in the linearizing process.

Analysis

The optimization problem is to derive the optimal control equation for

the minimum-fuel transfer or rendezvous of a power-limited rocket between

neighboring orbits in a given time. Mathematically, this requires minimi-

zation of the integral

t f Tf Tf

J : _o (_/m)_ dt= _o (no/2)A_ ar: _o fo (A)dr (2)

subject to constraints imposed by the equations of state which may be expressed

in the form

_ : f_ (x,A) i: i, ..., n (3)

The control is the thrust acceleration vector, A, in the present case.

_proble_s_r_e_as a problem of Lagrange in the calculus of varia-

tions. In particular, Breakwell's formulation (Ref. 9) of this problem is

used because the linearized equations in the present case are particularly

well suited to this formulation.

If a fundamental function F is defined as

n

F : -fo + 7 k_f_ (4)
i=l

the variational treatment requires satisfaction of Euler-Lagrange equations

in the following form as necessary conditions for the existence of an extremal

arc:

d_--L_: " _ (5)
dr 3xi

_F
n

3A_ 0 (6)
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where e is eccentricity, w is the longitude of peri-apsis, i is orbital

inclination, and _ is the longitude of the ascending node. The planetary

variables provide a simple means of introducing eccentricity into the termi-

nal orbits, and the form of the state equations using these variables is

particularly simple in the present problem. However, in a practical appli-

cation, they might be less desirable than the rotating coordinates because

the orbital elements cannot be directly measured.

In view of the foregoing considerations, eccentric terminal orbits have

been allowed only in the planetary variables in this study, while the analysis

in rotating reference frames is confined to circular terminal orbits.

It should be noted here that the three sets of variables are entirely

equivalent in that the equations of motion may be transformed directly from

one set to another by substitution. There are some differences in the required

linearizi_ assumptions which should be mentioned, however.

Consider the coordinate system depicted in Fig. l, a rectangular system

with its origin fixed on the interior orbit (assumed to be the reference

orbit) in the x', y' plane. The mutually orthogonal coordinates x', y', and

z' form a triad that revolves with angular speed no characteristic of the

reference orbit, so that motion in this frame of reference is relative to a

point on the reference orbit. The spherical coordinate system in Fig. 2 is

described by the arc x in the plane of the reference orbit, the arc z measured

normal to this plane, and a radial dimension y.

In order to linearize the equations of motion in the first system, it is

necessary to assume that excursions x', y', and z' from the origin be small

in comparison with the radius, to, of the reference orbit. Motion is there-

fore constrained to a small sphere about the origin. No restrictions are

placed on the component velocities. In the rotating spherical system, only

the assumption of small component velocities will linearize the equations,

whereas the arc x is not limited. The resultant motion is constrained to

a torus about the reference orbit.

Since the linearized equations of motion are identical except for

differences in notation (Ref. 5), one can draw the conclusion that, if in

the spherical system the resultant motion does not involve large variations

in x, the velocity components may be large. In the present study, use of

the spherical system has been assumed throughout, and the results may be

extended according to the foregoing discussion.

In the case of the planetary variables, the linearizing assumptions

require that the difference in the semi-major axes of the terminal orbits

be small and that the eccentricity of the terminal orbits as well as the

eccentricity of the instantaneous transfer orbit be small. The implications

of these assumptions are similar to those for the rotating spherical system
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An additional necessary condition provided by the Pontryagin Maximum Principle

must also be satisfied to ensure that the stationary solution predicted by

the Euler equations is actually an extremum. The maximum principle, which

may be expressed as

F (xl, %1, A_) >.F (xl, %1, A_) (7)"

ensures that the stationary solution is an absolute maximum. Furthermore, it

has been shown (Ref. 10) that for a system where both the state variables and

the controls appear linearly in the state equations, the maximum principle

is also sufficient to ensure a minimum of the payoff, J. Since all cases in

the present analyses are linear in the controls and satisfy the maximum

principle, the optimum trajectories described herein areabsolute extreme.

Due to the great number of equations involved, the variational analysis

is not described in each case. 0nly the most important equations are included,

and these are grouped in an orderly fashion in the appendixes. The rotating

coordinate systems are considered in Appendix I, and the planetary variables

are considered in Appendix II. For a more detailed account of the application

of the aforementioned equations the reader is referred to Ref. 2 wherein a

specific case is treated in detail.

Synthesis of the Optimal Controls

In ordew. to-put the cquations for_-he optin_z_d uonLzols into affirm

compatible with guidance requirements, several changes are made. First, T

in the control equations is replaced by -T. That is, the equations are

rewritten with "time-to-go" as the independent variable. Secondly, while in

the ordinary transfer and rendezvous analyses in rotating coordinates it was

generally convenient to assume zero initial conditions, the terminals are

reversed in the control synthesis. That is_ the target orbit is assumed to

be defined by zero values in most of the state variables. The results of

the control synthesis are expressed in terms of the guidance coefficients,

3A_/Sxl, of each component of the control vector, A.

The equations for the control synthesis are summarized in Appendix III

for transfer and rendezvous in each of the coordinate systems. Those equa-

tions which deal specifically with transfer between circular orbits have

been presented previously in Ref. 3.
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RESULTS

Orbit Transfer and Rendezvous

Themultiplicity of solutions generated in this study (particularly for
rendezvous) precludes a graphical presentation of all the resulting tra-
jectories. Anattempt is madeto summarizethe results in a reasonably con-
cise form with orbit transfer solutions represented as special cases of
rendezvouswhereverfeasible.

To simplify the presentation of the results, only circle-to-circle
transfer and rendezvouscases age examinedin the summarycurves of Figs. 3
through 13. Thefirst set of plots, Figs. 3 through 5, showsthe variation
of the componentsof the optimal thrust acceleration with time for circle-to-
circle transfer only.

The in-plane componentsAx/yz and Ay/yz are seen to display symmetry
about the midpoint in time for all trip times, as does the out-of-plane com-
ponent Az/roi. In particular, whenTt = 2n_, the componentsAx/y_ and Ay/y_
are constant with time, and the latter is zero. For the coplanar problem,
constant circumferential thrust acceleration is thereby specified as the
optimummodefor integral multiples of the period of the reference orbit,
a result that is in agreementwith Ref. 7.

Figures 6 through 8 showthe thrust acceleration componentsfor circle-
to-circle rendezvousat a particular trip time equal to one sixth of an
orbital period of the reference orbit. Theparameter in Figs. 6 and 7 is
xz/yzTz which takes on the value of 3/4 for the special case of optimum
transfer. Similarly the out-of-plane componentis plotted with _z as a
parameter. As indicated, the longitude of the node can have either of two
values, 150 or 330 deg, for optimumtransfer.

Thepayoff, J, canbe best represented as the sumof three components,
J1, J2, and Js, which are defined by Eqs. (A-44)and(A-45) and are plotted in
Figs. 9 through ll. The componentsJ1 and J2 define propellant requirements
for coplanar rendezvous,while the addition of Js introduces the out-of-plane
requirement. In particular J is equal to J1 for coplanar transfer since the
term x_/y_T_ 3/4 in J2 is zero for optimumtransfer.

All three components,as well as their sum, are seen to be monotonically
decreasing functions of T_. In the limit,as T_ _ _, A and J _ O. This is a
consequenceof the fact that no limit has been placed on exhaust velocity.
Similarly all three componentstend to infinity as Tz approacheszero because
zero trip time requires infinite thrust acceleration.

An interesting feature of Js is evident from Fig. ii. For _=kw, where
k = 03 i, 2, ..., Js is the samefor all nodal longitudes, _. For all other
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times the envelope of the family of curves is given by the equations

Js..x - T, - llin 7, I (8)

Js,ln : 7, + llin 7, I (9)

wherethe lower envelope is given by Eq. (9) and represents Js for optimum
transfer.

Choice of ReferenceOrbit

It has been observed that the linearized equations are applicable only
for orbits which are not separated by large radial distances. Morespecifi-
cally, excursions from the origin in the y direction should always be small.
It is apparent, however, that whenthe reference orbit is chosento have the
sameradius as the initial orbit the excursion, y, to the final orbit is
maximized. A better reference orbit would be one midwaybetweenthe terminal
orbits since this device would guarantee a radial excursion no greater than
half the distance betweenthe terminals.

Although for the most part, the equations of this report are based on a
_efereneeorbit_coincidentwith_t_e_ia_l orbit, Eqs. (A-_8) through (A-51)
and (A-131) through (A-134) are exceptions in this respect. These equations

are derived to account for an arbitrary choice of the reference orbit and may

therefore be applicable in cases" where the ordinary equations break down.

Application to Planetary Orbits

Strictly speaking, none of the planetary orbits are "neighboring orbits"

in the sense in which this term has been defined. Earth's closest neighbor,

Venus, has a semi-major axis, a = 0.7233AU compared with a = I.OAU for earth,

leaving a separation distance of 0.2767AU which is not << 1.0AU. However,

using the improvement referred to above, it is possible to apply the linearized

analysis to earth-Venus and earth-Mars trajectories with remarkably good

accuracy. In Figs. 12 and 13, comparisons have been made with exact solutions

from Ref. ii, for earth-Venus and earth-Mars transfers. The circled points

were calculated from Eq. (A-48) of Appendix I using a reference orbit midway

between the two terminal orbits. These results for the special case of

uninclined, circular terminal orbits show only a slight discrepancy in J

for transfer times up to one earth year.
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Extension of the Linearized Theory

Based on the successful correlation indicated by Figs. 12 and 13, a new

theory is being considered in order to account for second-order effects in J.

This theory is a "piecewise-linear" analysis which may be described as follows:

The transfer (or rendezvous) is divided into two steps, each requiring a

portion of the total trip time. The first segment of the trajectory consists

of a rendezvous from the initial orbit to an intermediate orbit of unspecified

size and shape, and the second segment is a rendezvous from this intermediate

orbit to the final terminal orbit. The expression for J is composed of two

linear expressions for the two segments, and the parameters of the intermediate

orbit are considered as variables which may be optimized so as to minimize the

total J. In each segment an appropriate'reference orbit is chosen so as to

improve the accuracy of the theory.

This approach should provide better results than the linearized theory.

Since the results for earth-Mars and earth-Venus transfers were already good,

the piecewise-linear theory may approach exact results in these cases and

might even yield acceptable results for trajectories to the outer planets.

Control Synthesis

In this study it has been possible to express each of the components of

the optimal control vector, A, as a linear function of the n state variables.

n

A_ = ? 8A_xi
i=l 8xl

(io)

Therefore, the presentation of the results can be confined to curves of the

guidance coefficients, 8A_/SXl plotted against time to go, T'. Using the

equations for the guidance coefficients which comprise Appendix III, the

summary curves of Figs. 14 through 25 were generated.

The synthesized controls for the case of transfer between an arbitrary

state and a nearby circular orbit appear in Figs. 14 through 16 in terms of

the rotating coordinate system variables. The extension to include eccentricity

of the final orbit is provided by use of the Lagrange planetary variables in

Figs. 17 through 19.

For rendezvous the same procedure is followed in the presentation of the

synthesized controls, with the addition of curves to account for the dependence

of in-plane thrust acceleration components on the circumferential distance.

In rotating coordinates, Figs. 20 through 22 summarize the results for rendezvous

between any initial state and a point on a nearby circular orbit.
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As in the transfer case, the planetary variables facilitate the extension

to rendezvous between an initial state and a point on a nearby orbit of low

eccentricity. The results for the planetary variables appear in Figs. 23

through 25.

All the curves for the guidance coefficients display similar behavior.

When time-to-go is short, the curves diverge to infinity (either positive

or negative), but a damped oscillation is evident, causing the coefficients

to approach zero for very long times.
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Thrus t-to-mass ratio

LT
n o m

Integration constant

Rate of change of a state variable
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Defined by Eq. (2)

Defined by Eq. (A-154)

Defined by Eq. (AolS_)

Defined by Eq. (A-181)

Defined by Eq. (A-146)

Lagrange multiplier

Radius

Radial force

Normal force

Circumferential force

Mean angular motion

Position components in spherical system

Position components in rectangular system

Velocity components in x, y, z, directions

Time

not
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LIST OF SYMBOLS

(contd. )

Time to go

True anomaly

Longitude of peri-apsis

Eccentricity

Unit vector normal to instantaneous transfer orbit

Semi-major axis

Longitude of the node
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a/a O

e sin
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sin i sin

sin i cos

Angular momentum vector

Index denoting x_ y, z, u, v, w

Index denoting x, y, z

Initial condition

Final condition

Denoting state variable

Intermediate reference orbit

Radial
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(contd.)

Circumferential
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APPENDIXI

ROTATINGRECTANGETLARANDSPHERICALCOORDINATESYST_NS

i. Equations of State

dx

dT

dy

dr

_z
d-.-F- = w

: A,, + 2y(:IT

(:Iv
: Ay + 3y- 2u

dw
_: Az- zdr

(A-I)

(A-2)

(A-3)

(A-4)

(A-5)

(A-6)

2. Euler-Lagrange Equations

_ = O

_,y :-3Xv

)_z : Xw

Xu : -X= + 2X v

Xv : - Xy- 2X u

Xw : -Xz

ku : noAx

_,v : rtoAy

Xw = noAz

(A-7)

(A-8)

(A-9)

(A-10)

(A-If)

(A-12)
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3. Integrated Euf[er-Lagrange Equations

)_ = noCo

,kv = -6no(C4 + Cot -Ctcosr + Czsinr )

).z = 2%(C ssinT + C 3cOst-)

X. = no(3C 4+ 3Co r - 4C I cost" + 4C 2sinr)

kv : 2no(Co+ C,$inr + Czcosr)

Xw : 2no(Cscos¢ - C3 sinr )

(A-16)

(A-IT)

(A-18)

(A-19)

(A-20)

(A-21)

4. Boundary Conditions

Transfer Rendezvous

State Variable I"--0 r=rf r =O r = wf

x 0 FREE 0 xf

y 0 yf 0 yf

z 0 zf 0 zf

u 0 _;f(_ 0 2 "f

v 0 0 0 0

. 0 _/_o.i2_z, , tz_ 0 _.iz_z, _2_

_. Integrated Equations of State (with initial conditions)

X -"

÷[_.,o.-,o.=_.-,_.]c,-[_.' -,_,,-oo..,]_.
(A-22)

y -" [8(,-co,,)- 3,']c, + 5[,in.- .=,.]c,+[,.,,o.-.,,-=_.,]c.
(A-23)
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z : It cost-sinr]Cs + [rsinr]Cs
(A-24)

U =

+[,o._,o.-,_(,-co.)]_,÷[,_,,n.-..]_o (A-25)

V = [8s_o.-6.]Co÷[_..i°.]c,÷
+3[,-co.]c.

[ 5T COSt - 3$inr]Cz
(A-26)

.= [-•s,..]c.+ Is,..÷
(A-27)

6. Transversalit_ Conditions - Transfer

_'x : Co: 0 (A-28)

wf

Cs tonTf + -_-

C3 I - _ ton z'f

(A-29)

7.. Constants of Integration - Transfer

174

C I =

C2 =

C 3 :

yf sin Tf

16(I- COSWf)- Tf (STf + 3sinrf )

--yf (I - COSTf)

16(I- C0STf) - Tf(STf-t- 3sinTf)

(sin'rf + "rfCOSl"f )zf - (T'fsinl"f)Jro2i 2- Z_

Tf Z _ sin2wf

(A-30)

(A-31)

(A-32)
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Rendezvous

C 4 =

__1( 5re+ 3sinq )

16 ( I - cosTf) - Tf( 5r t + 3$inrf)

(A-33)

C o =

3
4 ) ( 5Tf - 3sinr e)

rf (ST1- 3sinrf)(Tf z -80) + 4(I- coszf)( ?lTf'- 64) + 248T e ZCOSrf

(A-34)

C I =

yf sinrf

16( I - cosTf) - Tf(STf + 3sinrf )

"1

3$inTf - 8( I- cosT_) |

-] (A-35)

C 2 =

-yf(I-C0S_)

16(I - COSTf) - Tf(STf + 3 sin rf) 3Tf(I +cos_)-SsinTf ]+ C° 5rf - 3sinrf (A-36)

C3 =

( $inrf + TfCOSTf ) Zf - (rfsinrf) _/roZl ! -zf !

(Tf 2 - sinZrf )

(A T)

C 4 =

Y_E (STf+ 3sinTe)
6

16(I-c0$Tf)- rf(Srf + 3sinTf)

(A-38)

C 5 =

(lrfSinlrf)Zf 4- (TfC0Slrf -- sinlrf ) _roZi z- Zf

(r_ - sin'q)
(A-39)

8. Controls

A, : 3C4+ 3Cow - 4C I cost + 4Czsinr (A-40)
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Ay = 2 [Co+ C, sin," + Czcos'r

A, : :' [C_cos," - c,,i,,,']

] (A-41)

(A-42)

, Payoff

Transfer

j ( "_'o )2 (5"_'t" 3sinrf ) i 2
: -t-

Rendezvous

J

no3ro 2
: J'(%. y,q 4 + J.i' (A-_)

J (_)'(s_,+ ssi._,)

°2,o' 8[_,c5_,

4-

+ 3sinrf) - 16( I - C0STf)]

( yfTf-_- ( ro

3 ,2

) ( 5Tf -- 3sinTf)4

-4-

3
-4" *'f (Srf - 3sinq )(rf z- 80) + 4(I - cosrf)(71rfz-64) + 248rf _ cosrf

_, [ ,',- ,_.:i__o_(zn,÷:,: ]
(r_ --sinZrf )

(A-45)

i0. It should be pointed out that for each free end condition in the case of

orbit transfer, the variational analysis predicts an optimum value for that

particular state variable at the end point. In the rotating coordinate systems

the x and z coordinates are left open at final time, Tt . The end point for

the optimal transfer is then determined in the analysis and is defined by the

equations.
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*- Jl :_ cosTf (A-46)

(A-47)

ii. Payoff E_uations with an Intermediate Reference Orbit

Let the origin revolve in a circular orbit of radius rI between the two

terminal orbits such that the radial distance to the outer orbit is rz-r I

and the radial distance to the inner orbit is rI-r 0 . The radii ro and rt

refer to the inner and outer orbits, respectively.

Transfer

2

J

ni3r J Tf (5"rf + 3sinTf) - 16(l-cosTf) + Tf + I sinTfl

±
8 (_._:.[Q.)2( 5Tf + 3 sinTf)

rl
(A-48)

Rendezvous

J

nl 3 ri 2

-t-

I rf-ro 2.

Tf (5Tf + 3sinTf)--16(I-- C0STf)

T f2{ Xf 3 rf+ro }22 Tf rI 4 ( rI 2) (5Tf- 3sinTf)

3
"_- Tf ( 5Tf -- 3sinTf )( Tf 2 _ 80 ) + 4 ( I - C0STf X 71_-f2 _ 64 ) + 248 Tf 2 cos _'f

(A-49)

i2 F Tf 2- sin'lf cos( 2L'/,f +'rf) "[+ (L rf 2 _ sin2rf f

4;'

_77



C-910098-12

12. Optimal Transfer Coordinates

C'_]"_ ('+'o: -_-rf - rl
2) (A-50)

JI + cos_'fz--L_": i 2
rI !

(A-51)
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APPENDIX II

LAGRANGE 'S VARIABLES

In the theory of special perturbations, as derived in Ref. 8 for example,

the equations for rates of change of the elements of an elliptic orbit are

_ritten in terms of the elements and acceleration components S, R, and W,

which are perpendicular to the radius vector, radial and normal to the orbital

plane, respectively.

Consider the five elements, a, e, i, w, _. The equations for small rates

of change of these variables are

: [ ]
dt n.v/_-__ e eRsin'r/ 4- S(I -t- e cos'r/)

de = _ [Rsin'r/ + 2cos_/ +e + ecos'_ ]
d_ no I + e cos_ S (A-53)

= W cos(_,+W) (A-54)dt no

: - Rcosv/ +
d t noe

i

2 + e cosw • ton _ sin(_+W) W 1
I +ecosw S sin_ -- I+ecosw J (A-55)

dn w
= . . sin(w+_/)d t no s_n

(A-56)

In order to avoid singularities for zero eccentricity and inclination in

Eqs. (A-55) and (A-56) these equations may be transformed according to the

following definitions:

x2 : e sin (_
(A-57)
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X3 : e cosw

x s = sini sln_

x e = sin i cosl'_

(A-58)

(A-59)

(A-60)

Under the assumptions

e << I

(1 _, oo

rl ,_ flo

r : not : (o+_

i << I

(A-61)

R S W

A R : n°2" , A S : _ , Aw :o o Oo I"1o
(A-62 )

and with the further definitions

o

Xl : O_

X4 : X

(A-63)

(A-64)

the equations of state for the variational problem may be derived from Eqs.

(A-52) through (A-60).

There is a direct equivalence between these equations and the equations

of state in the rotating coordinate system variables. That is, each of the

Lagrange variables xl, x2, xs, ..., x6, can be expressed in terms of the

rotating coordinate variables, x_ y, z, u_ v, and w.

Referring to Fig. 26, define a position vector _ in nonrotating

coordinates originating at the center of attraction F. Assume the motion

out of the reference plane is uncoupled from the in-plane motion.

Relative to a rotating rectangular coordinate system originating at 0

and rotating with angular velocity n this vector is
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r = xi ÷ (ro+y) j (A-65)

where the unit vectors _ and j are taken in the x and y directions, respectively.
The vector velocity V is obtained by differentiating r.

--_ dr .._ -- --_ ..-
(66)V = dt : u, -I- vj + nxr A-

Since n = no , the expression for V is

V : u-no(to+y) i + (v + nox j (A-67)

Using Eqs. (A-65) and (A-67), expressions can be written for the angular

momentum C, the path speed V and the radius r of the vehicle

_ __ [ ]-C = r xV : x(v+nox) - (ro+y)(u-no(ro+y|) k (A-68)

V = '_V _'. : J[u no(ro-l-y)]2- -I-- [v -Fnox_ I (A-69)

J"" -" _/x2 y)2r : r . r : + (ro+ (A-70)

The following equations can be written for the angular momentum, speed, and

radius of a body in an inverse square field.

I 'l : (A-T1)

JK 2 ' ) = J(_)' "t" (r_)'V : (r o
(A-72)

o(l- e z)

I+ecos
(A-73)
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Combining these equations with the absolute value of C, and with V and r

from Eqs. (A-68), (A-69), and (A-70),the following scalar equations result.

o
m l

Qo
(1+ Y)(l+ecos_))

%
(A-74)

Finally, noting that

u y
- (_ +=-) •

%-'_o ,Q

V X

"o% 'o
e cos ,_• o_.

Go

(A-75)

(A-76)

(]
m

Oo
x I , x2 : esin(_

e cosw • e cos(T-_) :

(A-77)

the equations relating the coordinates are obtained.

Y_L : (x,-l)- x2sin_ -x scosT (A-78)
%

v (A-79)
%-_o = x3cost -x_sinT

u 3 (A-80)
noro : _ (x!- I) -2x 2 sinr-- 2xsCOSl"

The components of the out-of-plane motion can be related in the following

way. If N is a unit vector normal to the instantaneous transfer orbit and s

is a unit vector in the direction of the line of nodes, then

S : N x k (A-81)

and, since the angle between s and the vehicle is _ - _,
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cos(r-D,) = s • i

Also, the orbital inclination is

COS i : N • k
(A-83)

Using these parameters the equation for the elevation, z, of the probe is

or

z
m --

ro
toni $in(r-,_) '_ $ini sin(r-1'),)

(A-84)

Z

r@
= - x scosr + xssinr (A-85)

The out-of-plane velocity,-w, is

.w

n_ro xssinr + x6cosr
(A-86)

1. Equations of State

dx!
: 2A sdr

dx 2
= 2Assinr -- A R COSTdr

dx$
dr : 2A scOsr + A Rsinr

dx 4 3
--dr : -2{x I-I)-2x zsinr- 2xscosr

dxs .
dr Aw sin T

cl xs

d r A w cosr

(A-87)

(A-88)

(A-89)

(A-90)

(A-91)

(A-gF2)
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2. Euler-Lagrange Equations

-" 2 )'4 (A-93)

)[t = 2X4sinr

)Z3 : 2}%4 cost

(A-94)

(A-95)

(A-%)

no A s : 2(Xi +X=tinT +X=cosr )
(A-97)

noAR :--)'z c0sr 4-XS sinT (A-98)

noAw =-Xo sinr +XsCOST

3- Integrated Euler-Lagrange Equations

Xi : X,o- _- )'4r (A-IO0)

X2 = _- 2_4 COST
(A-101)

)_a : _'30 +2;k4 $inr (A-f02)

X, : CONSTANT

_ _ il

_8
|I

(A-f03)

(A-104)

(A-I05)

4, BO I_ d,a,r_i Conditions

A great simplification in the complexity of the equations can be achieved

by taking advantase of the syw_netry afforded by the La_range variables x_ and
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xs. Therefore, in performing the integrations it will be convenient to use
limits -T_/2 to T_/2 for the "in-plane" state variables.

Transfer Rendezvous

State Variable r =- _ r : _A T :-_ r : _-

(,"in-plane ") . 2 "2 2 2

xe I Axlf+ I I Axe,+ I

X2 X20 X20 + Ax2f X20 X20 + Ax2f

x 3 x30 X30 + AX$f X30 X30 +_X3f

x4 X4o • FREE x4o X40 + _X4f

(put -of-plane ) T = 0 T :rf T :0 T : Tf

xs 0 xsf 0 xsf

X 6 0 X6f 0 X6f

_. Inteffrated Equations of State (with initial conditionsi

Ax 2 =- 4_I0(COST_C0$ l"f )+ )_20[ Wf $irlTf ]2 _ 5(r +-_-)- 3(sin_'cosr+ _---)

[ r, q ]:3 r, rf ). _ 3 (r cos r + -_ cos y )+ -_- )'50( sin21" -- sin2"-_- ) - 2X4 4 ( sinr + sin -_-

(A-107)

Ax 3

+ co,,.+ ,]
- 2 4(cost co_f ) + 3( r cos'r + _ cos2

(A-108)
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= )"_.. _.{,,_+} -.[.-oo,,.÷_,1}

3 z'f 19

÷,._[_,.- oo,} ]- ,..[ .,o.÷,,o-}]

(A-109)

Xs .._ sinZr
xs = _ (1- -sint'cosr) - 2

)'5 Xe
xs = -T sinZT + T iT + sinTcosr )

(A-111)'

6. Transversalit_ Conditions - Transfer

k4 : 0

toni"

(A-II2)

(A-113)

_. Constants of Integration

Transfer

)_10 =

(5Tf + 3sinTf) -- 4_xsf sin l"f
4 2

Tf (ST! + 3sinT t) -- 16( I- C0STt)
(A-114)

_2o =
2 ax2f

5rf- 3sinrf

(A-115)

2[_AX M - 2_Xlf Sin "_"1
i ii

Tf ( 5Tf ÷ 3sinl"_) - 1611 -C0STfl
(A-LZ6)
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Rende zvous

_'s =
xsf (rf+ $inTfc0sr) + Xsf sin;_rf

2 (Tf2- sin2rf ) (A-lIT)

-_ (Srf -I-3sinTf) - 4Ax3fsin-_-

X,o" (A-_8)
Tf ( 5rf-I- 3sinrf ) - 16( I - COSTf)

)_20 :

oo,.,)-

.,

(A-_9)

2[rfL_x3f - 2&x,fsinf ]

X3o : (A-120)
Tf ( 5Tf -I- 3sinTf ) - 16( I - cosrf)

_4 = , [_rf z
_(Srf- 3sinrf)(. rf_+l)-2(8sin_ - 3rfcos-_-)

3

_. L,,.,cos_.÷3sin_1,- cos,_)-
IF,,.,J

I"Ax3f. rf Ax4f " "l

J

-_6 r fA xDf(5"rf-3$intf)

(A-J_2J_)

{Xgf (Tf + sJnTf COSTf) + X6f sin2Tf } 2i [rf sin_,f + sJn_ sin(_,f+rf) ]

rf 2 - Sin2rf rf 2 - sin2rf

z { _5,si"z_, + "6,( ", - si.,-, cos,-,) }

Tf2 - $in21-f rf 2 - sintTf

(A-122)

(A-i23)
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8. Controls

noA s = 2Xao - 3)_4T + 2k_osinT + 2X3oC0ST (A-124)

n o AR = 2 _4 -- _'_0 COS T + _30 sin 1"

no Aw = - X 5 SinT + )_6C0S1"

(A-_5)

(A-126)

o Payoff

Transfer

J

3 ro2n o

Rendezvous

No_: (1)

8 (5"rf + 3sin,-f) -4 Z_XlfZ_xmfsin-- _. +
+ (A-12T)

Tf (STf + 3sinTf) - 16(I--cosTf) 5Tf-3sinTf

i 2

-F
rf + Isin_'f I

J

no 3 ro 2

Z_X if 2

8_(STf-_-3sinTf)- 4ZlXlf Ax3fsin- _- -t- l"fZlx3f 2

(STf+ 3sinTf) -16(1-cosTf)

+
s ( r, !t_a +3 r,-_-(STf--3sinTf) 2ZlxzfCOS-2 - 2Ax3fsin 2 X4f _-_&x,f-4x_sin_--j 2

(A-128)

Tf( 5Tf - 3sinrf )( _ rfz-i - I ) - 2(3Tfcos--;_- - 8 s,n 2

+

3 2+ _ - 8sin _ )2l"f(STf- 3sinrf)( -_-l"f I)- 2(3rfcos 2

3
rf Ax2f:'( -_- rfz+ I)

-I-

.-I-

3 2 2

Tf(STf -- 3sln_)(_r, +1)- 2(3rfcos _ - 8sin-_J-)2 2

i2 [ Tf -- slnrfcos(21"},f+Tf) ](rf 2 - sin 2 rf)

NOTE: (1) The second term of this equation is incorrect in Ref. i.
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i0. The optimal values for changes in the state variables x4 and _ are pre-

dicted by the variational analysis in the case of orbit transfer where the

values x4 and _ are left open at the final time.

Llx 4
3 . "rf Tf

T Tf &x#t - 2A x3fsm--_- - 4 x3osin-_-

_rf Tf
4Zlx2f I Tf 51"f-3$inl"f)-i- 5_cos._--Bsin-_-'j"

(A-129)

"_,l/,ftt = nlr --
2 (A-130)

ii.. Payoff Equations with an Intermediate Reference Orbit

Transfer

2
Tf 2

Z_xlf (Srf+ 3sinrf) -- 4Z_xlf L_x3f sin_-- + TfZ_X3fJ 8

nz3 fT,,2 rf (5rf + 3sinrf) - 16(I-cosrf)

.2
I

-t-
rf +Isinrf I

Z_x2f 2

-t-

5rf-- 5sin_f

Rendezvous

AXlf 2 2. Tf
_(Srf+ 3sint})- 4AXlf Ax3fs,n _- + TfAx3f

Tf( 5Tf+ 3sinrf) -- i6( I - cosTf)

-I-
-_(Srf-3sinTf) 2 Ax2fc0s- _- - 2Zlx_fs,n--_ Ax4, -t- re( xl0+xlf-2)- 4Xsosin-_-} =

(A-131)

4-

3 t-f =
_-f ( 5t-f - 3sin_) ( -_- _'f" + I ) - 2 ( 31"fcos _ - 8 sin T )

Tf { 2 Ax2f COS A x3f sin -_ _X4f + _-t'f( Xl0_" Xlf) - 2 .,_ 3 --2 )- 4X3osin_-}

+

+

3 2 Tf Tf ) =
rf (Srf - 3sinr_)( _-_'f +1) - 2(3rf cos-_--8sin--_-

2 3
Tf AX2f ('_Tf2-1- I)

i2

3 rf Tf z
rf(STf - 3sinTf)(_t2+l ) - 2(3Tfcos_- -8sin-_)

rf -- sinrf COS(2_f+rf) (A-132)
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12. Optimal Transfer Coordinates

3 rf rf
AX4* = _-Tf( XlO+ Xlf -2 ) -- 2Z_x3f sin -_ - 4X3oSin-- _

4Ax2f [ I cosrf (5rf- 3sinrf) + 3rfCOS+
5rf - 3sinrf " _ 2

-_ - 8 sin _L }2 2

(A-133)

_,* _ (A-134)= N_ -- --
2
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APPENDIX III

SYNTHESIS OF THE OPTIMAL CONTROLS

A. Rotating Coordinates

I. Control Equations

_Ay _Ay
Mu +

_Ay ¢)Ay

av----Tv+
(A-135)

¢}A= _A_ _A x _A_

_y UU _V
Ax = y +-x-:..u + v +--r--x

Ox

_A, _A z
A, = -3.;-z +-_-..

(A-136)

(A-13T)

2. Guidance Coefficients - Transfer

_Ay

_y

12 r'
-_- ( I - cosT' ) ( 29 - 27cosT')

(A-138)

24
: _ (I - COST') (llsinr'- 3r'COST' -- 8r') (A-139)

12

: T ( 5T_ + 3r' sinr' cosT' - 8 sin=t "' )
(A-140)

ay

12
[ 70r'sinr' -- 55r '= + ISr' sinr, cosr't- 3(I -- COST,)(5 - 27COS#)1
I. J

(A-141 )

6

"-=- L[ 65r'z - 80r' sinr' - 24r'sin_ cosr'-(I- COST')( 25--103 cosT')]
1

(A-14e)

8v
24 (i)

( 8_ - II sinr, + 3r, cosr' )( I - cosT, )

U) NOTE :

(A-143)
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_A z -- 2 $in_r ' (A-144)

C]Z T'2 -- sin_r'

_A z -(2r'-sin2r')

_--;- : ," - ,In',' (A-145)

where

: 480T'- 75r '3 -- 240r'cosr'(I +cost')-- 144sinr'(I-cos_)- 213r' sinZr '
(A-146)

3 • Rendezvous

D_e to the length and complexity of the synthesized_ in-plane_ control

equations for rendezvous, the guidance coefficients are not written explicitly

here. Instead the basic equations are tabulated; and the coefficients calc_mlated

from these equations are plotted in Figs. 20 through 22.

_A_ _4 @Co @C, _2 (A-147)

_---_- " 3 _., 3--_x r' - 4-_x ¢o'1"'--4"_x sin1"'

8C_ 8C_ c°$" 1_ sin," + _ (I-148)

¢)Az _A z

A, • 7;-z z + -_-. * (A-149)

1
o (A-l_0)

C I =

¢,o _ ¢,z ¢,.

(A-l%)
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4K)

4_o

43o
4,o

l_)li X (_)14

q_, y 4.
4,, .
4., v 4..

o (A-152)

C4 =

4,o 4,, 4,2 x
4.0 4., 4- y
4.0 4., 4.. "
4.o 44, 4..

D
(A-153)

where

D=

4_ 4. 4, _,.
q_o 4,, 4,, 4,.

4.o 4., 4., 4..

(A-154)

and

3 T,,zl 9
410 = -_" - ST,' -I- 8sinT,' 4_0 : 8(I- COST,') - _- T,'l

@. = 8(I-COST,')-.ST,'sinT,' 4.1 : 5T,'COST,'-3sinT,'

c_,. -_ ST,'COST,'- II sinT,' + 6T,' 43 , = ST,'sinT'- 6(I-cosT,_

_o : %( I - cosT,') - _.3 _ 4,0 : 3"r' - 4 sinT,'
- sin1"] 44, -5 " t_sinT,'4z, _- [ T,'cosT,' 2

_il, _ T'ISirtTI --4{ |- COST _) ¢4, _ sirtlT'-- "_'_ T'*cOsl"4

4.4 = 3 ( t'- sinT,,) 444 : -3( I - cosT,,)

(A-155)
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(_z - 2 sin2r *

_Z T_ -- sin2T ,
(A-156)

_Az - ( 2T'- sin 2T')
m ---

_w T '2 -- sin=T ' (A-157)

Be Lagran_e Variables

i. Control E_uatigns

(_AR OAR _R _AR AX ClAR (A-158)

A w: _ x 5_ _-'_x 6Axs

2. Guidance Coefficients - Transfer

(A-160)

_A R

_Ax,

-- 4 sinT, sin

r'( ST' + 3sinT') - 16( I- cosT')
(A-161)

_ COST'

ST' --3 sinw °
(A-162)

c_AR 2 w'sin T'

_ST'+ 3sinr') - 16(l - cost")
(A-163)

_As

_Ax t _( St" + 3sinT')- 16(I -COSt")
(A-164)

_A s 4 sinT'

_X t • St*- 3lln_'"
(A-16_)
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_Aw = COSt' sinZr ' (A-166)

aAx5 _.,Z_ sin2r,

aA w

_Axe

c_As

- / COSt'( 2r'- sin2r') (A-167)

r; 2 _ Silq_T*

4(2sin _- rtosr')

" T'{Sr'+ 3sinr')- 16( L-COS_) (A-168)

3. Guidance Coefficients - Rendezvous

_A R

_Ax I

,r!

4 sinr'sin -_

Q

ST' - 3sin1"'+ 2COSt'( 3r'cos_- -- 8sin _--

B (A-169)

_IAR
S

c_x z

c)Ae

c}Ax 3

- _sinr'
-t-

O

._.* • T I , 'EI+ I ) + C0$_ (ST'- 3sinr') + 2(3T'COS - 8sm_-)(l+oosr Cos--_ )

B (A-170)

[ ]$in-_j 5r'- 3sinr'+ 2cosr'{ Br'cos-_- - Bsin _- ) (A-in)

B

aA R

_Ax4

__[ r' r' 1I 5r'- 3sinr'+ 2COST'( 3r'cos-_- - 8sin-_ )
2 (A-172)

f

_A R

¢)X3o

OAs

_Ax,

r' . 1"' )]

B

I (St' + 3sinr'- 16sm_" cos_)2

O

[ r, r']3---r' 3r'(5r'-5sinT') + 8sinr_3T'cos-_-8$in_-)
16

B

(A-173 )

(A-174)
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c)As

0Ax 2

(:]As

aAx 3

4r, Sin_T'2-t-I)-i- _--T'COS_(Sr'--3sinr')

B
T' T' T*

( 3r'COS'_ - 8 sin _" )(3T'+ 4sinT%os -_ )
+

B

4( T'cosr' - 2 sin _ )

/ sin 3r'lSr'-3sinr') + 8sln_( 3r'cos
2

+ B

-_ - 8sin r' )]

(A-175)

(A-176)

_A s

_AK 4

_ , r' _ 8sin--_')]I [ 3r'(Sr'-3sinr') + 8sinr'( ._rCOS-_4

B
(A-1TT)

_'_]_'[3_s_'-3_,o_')+ 8_i__'c3_'co_- 8_iosin-_

B

(A-178)

OA w

_Ax e

2 sinr'( r' + sin 2r')

t-_ _ $in2 T,
(A-179)

where

2 + .,o
t,_- $irt2T-,

(A-180)

Q : 16(I-c0st') - r'( 5r' + 3sinr')
(A-181)

B : r'( St' - 3$inr')( i_ r' r* )2r_+ I) - 2(Ssin--_" - 3r'COS--_-
(A-182)
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IN-PLANE COMPONENT OF J
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IN-PLANE COMPONENT OF d
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GUIDANCE COEFFICIENTS FOR OPTIMUM

ORBIT TRANSFER
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GUIDANCE COEFFICIENTS FOR OPTIMUM

ORBIT TRANSFER
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GUIDANCE COEFFICIENTS FOR OPTIMUM

ORBIT TRANSFER
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GUIDANCE COEFFICIENTS FOR OPTIMUM CONTROL

ORBITAL RENDEZVOUS

_A z

_w
-5

-I0 .............. 1. I [ I
0 _ 2"E 3"rr 4"n"

I
T

_A z

az
--20 -

- 40 ........ 1.......... J J I
0 "n" 27r 3-n" 4"n"

I

T

2].8



C - 910098- 12

GUIDANCE COEFFICIENTS FOR OPTIMUM

ORBITAL RENDEZVOUS

I0

-I00 17 2_

-,CI

I I l

317 417 577

CONTROL

I0

_As
--o
az%X2

-i0 0 I I I J ,_1;" 2.". 3."./" 417 17

T I

FIG. 23

IO

(}As o

aAX 3
m

.I0 0 i I I I ,17 2.".7 _'n" 4Tr 5"_

T'

I0

(}As o

0

I0

I I I I I

17 27r 3"." 4.". 5.".

T I

I I I I I

-I00 17 2.". 3_" 4/r 5;r

T !

219



C- 910098- 12

GUIDANCE COEFFICIENTS FOR OPTIMUM

ORBITAL RENDEZVOUS

CONTROL

IO

-I0 o
! | I I

2"n- 37r 47r 5-tr

T'

I0

.100 m J m i J•n" 2T 37r 4_ 5_

T !

'°l
_AR 0

I I

2Tr

T'

I I I

3_- 4rr 57r

it,

-IO 0

I0

-I0
0

I I __ l i

27r 5_" 47r

T'

57,"

22O



"C- 910098- 12

GUIDANCE COEFFICIENTS

ORBITAL

FOR OPTIMUrA CONTROL

RENDEZVOUS

FIG.25

0

-I
0

I I .... l.................. J_ J
"/T 217" ST/ 4//" 5"rr

.r I

0

-I

-2

I m

J

J I 1 I I I

0 7r 2Tr 37r 471" 57r
•r I

221



C - 910098- 12 _ f.

RELATIONSHIP BETWEEN ROTATING AND

COORDINATE . SYSTEMS

NON - R OTATI N G

FIG. 26

!10

ro

r

tl

o

F

222



@

HONEYWELL, INC.
MILITARY PRODUCTS GROUP RESEARCH DEPARTMENT

Minneapolis, Minnesota

AN APPROXIMATION TO LINEAR BOUNDED

PHASE COORDINATE CONTROL PROBLEMS

By

E. B. Lee

Prepared for

George C. Marshall Space Flight Center

National Aeronautics and Space Administration

Huntsville, Alabama

223



B

AN APPROXIMATION TO LINEAR BOUNDED

PHASE COORDINATE CONTROL PROBLEMS*

E. B. Lee

1. Introduction

In many control problems both restraints on the magnitudes

of the control variables and various system variables may occur.

Certain results [1,2,7] are available for the determination o£

optimal controllers for some classes of _inear and nonlinear

systems involving such restraints. These results take the form

of necessary c_ sufflclent conditions for optimal control but

not both, and are therefore only a partial solution to even

the theoretical problem, leaving much to be desired in the

way of a practical solution. To use the necessary or suffi-

cient conditions for synthesizing an optimal controller it

is necessary to solve a two-point boundary value problem in

terms of a number of free parameters and multipliers where

the number of parameters is not even known as well as certain

Jump conditions [2,7]. A backing out procedure [9] is also

available if one is interested in flo6ding the domain of

controllability with responses and then keeping track (storing)

of the corresponding control magnitude for each such point.

We here offer a procedure which has several advantages

over the above schemes, but is only an approximate solution.

Its main advantage is that no discontinuities will be encoun-

tered in the adJoint solution which determines the optimum

controller and therefore the resulting two point boundary

value problem may be more readily solved. The results provide

both necessary and sufficient conditions, as well as existence,

*Prepared under contract NASw-986 for the NASA.
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for the approximate problem.

The analysis is limited to linear control processes as

described by the differential system

£) x = A(t)x + B(t)u(t).

The coefficient matrices A(t) and B(t) are composed of known

continuous functions on the time interval [to,tl]. The con-

troller u(t) is to be chosen from a set O:TuJl! i; J = 1,2,...m,

so as to steer the response, Xu(t), of £) from an initial

point x o at time to to a prescribed compact target set GCR n

and it is required that Xu(t) remain within a given constraint

set, A, during its entire response. Here Rn is the n dimen-

sional real number space.

The problem of time optimal control, as considered in

the next section, is to find a controller u(t) which steers

Xu(t ) from xo to G CA in minimum time, that is, minimizes

C(u) = tI - to with x(tl)e G and Xu(t ) E A, to ! t _ tl._

Later, in section 4, we discuss other optimum control cost

functionals.

.............. , __u±_ involved when one

directly solves for this optimum controller. We shall there-

fore be content with solving the following apparently.simpler

problem: Find that controller u(t) with graph in _ _.._hich

steers Xu(t) from xo at to to G at t I with x_(t I) _ 8 and

t I - to a minimum, x_(t) is defined below.

It is assumed that A is a closed convex set, (for

convenience we could even let A = [xlx'H x < c}, where H is

a positive semi-definite matrix and c = constant > 0.) Let

F(x) be a convex continuous differentiable function which is

such that

F(x) _ 0 if x _ A

=0 ifxcA
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Then define t

pt

x_(tl) . j 1 F(xu(t))dt "

_O

--x_(tl) essentially measures the excursions of the response

Xu(t ) to a controller u(t) outside of the region A during the

time interval [to,tl]. By keeping x_(tl) small theresponse

Xu(t ) is restricted to stay _lose to or within A. The above

minimum time optimal control problem is approximately solved

controller which steers _,(t) = (x_(t)Xu(t))_ fromby finding a

(O,Xo) to G = [xO,xlx c 9, 0 ! x° ! _] in the minimum time

interval tI - to if 8 > 0 is sufficiently small.

In the next section we give necessary and sufficient

conditions for this approximation problem using the time

optimal criterion. Section 3 contains an example and section

4 is a discussion of the approximation problem fo2 other cost

functionals.

2. The necessary and sufficient conditions for the approximate

linear time optimal problems

We augment the system £ by considering the equation system

tThere-is, of course, some question as to whether such a
function "F(x) exists for an arbitrary convex set A contained

in Rn. We now cite an example which shows that there are
such functions in.a number of interesting cases. Suppose

A = [xl, x2,...xnllx21 _ 1]. Then pick F(x)

= l/2(x2 - l)2 if x2 > 1

- o if Ix21! 1
- i/2(x2 + 1)2 if x2 < -1

ThUS if only one coordinate (or a linear combination) is res-

tricted the problem is easily handled as in the example,
where F(x) is continuous and has continuous partlal derivatives.

Other A's can be approximately handled as in the example.
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= A(t)x + B(t) u(t)

obtained from X) by adding the equation for _o with x°(to) = 0.

Here A(t), B(t) are bounded and continuous on Eto,t l] and

F(x) is a convex function with F(x) = 0 for x _ A. 8_(x)

is assumed to exist add be continuous everywhere.

The set of attainability K(tl)_Rn+l is'the collection

of end points _u(tl) of responses _u(t) = (x_(t), Xu(t)) of

which initiate at (O,xo) at time to corresponding to all

(Lebesque) measurable controllers u(t) which are such

that luJ(t)l ! 1 on [to,tl], for J = 1,2...,m. (Such

controllers are referred to as admissible controllers.)

In the following theorems we establish various proper-

ties for _(tl) and 3K(tl) as required in synthesizing optimal

controllers.

Theorem 1 Consider the above s2stem _) with initial point

xo, restraint set fl, and set of attainability _(tl).

Then _(tl) is a nonempty compact subset of Rn+l in variables

_X_X) with convex lower surface (as defined below) for each

to _ tI < ®.

Proof _(tl) is nonempty since any measurable controller

u(t)C fl gives rise to an end point Xu(tl)¢ K(tl). K(tl)

is compact because the system _) satisfies the hypothesis

of the existence theorems of references 6, and 8.

The lower surface of K(t) is where exterior normal

n+l vectors _ to K(t) at points of _K(t) have their first

component _o ! O. We now show that if x I and are points

of K(tl) then the point y = kx I + (1Lk)_ 2 = (yO y),

0 < k < l, is such that
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y - xG(t I)

and

y° >_x (ti),

where u(t)^: k ul(t). + .(l'k) u_(t)_ and u1(t)_ and u_(t)_ are

such that Xu1(tl_azd=x_. (_=x 2. The convexity of the
lower surfac@ of K(tl) then follows because in order for

it to be nonconvex "It is necessary that there exist two

points Xl' x_ on this lower boundary, with the property that

the point k x I + (l-k) _2 is below the set I_(tl) for some

0 < k < I, which will then be impossible.

With u(t) = k ul(t ) + (l-k) u2(t ) we find that

x_(t I) = _(tl)x o + _tl _(tl)_-l(s)B(s)G(s)d s
t
o

= k _(tl)Xo + _tl _(tl)_-l(s)B(S)Ul(S)d _

t
o

+ (l-k) (tl)x ° + _tl _(tl)_-l(s)B(s)u2(s)d

t o

= k xul (t I ) + (l-X) Xu2 (tI) =

= k xI + (l-k) x2 = y

where _(t) is the fundamental solution matrix of £ with

_(to) = I. We also calculate

tXua(tl ) = 1 F(xG(t))dt

to
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and k xu (tl! + (1-k)oXu_(tl)fIt for comparison. Since F(x)is a convex function follo_s that for 0 ( k < l,

F(X_(t)) = F(X xul(t) + (1-k)Xu2(t)) _< k F(XulCt))

+ (l-X) F(Xu2(t))

and so

x_(tl) = ltl F(x_(t))dt = ltl F(k (t) + (l-k) x (t))dt

_o _o xul u2

<__k ltl F(Xul( t))dt + ltl (l_l)F(Xu2(t))dt = yO.
_o 50

Q.E .D.

We will now consider those controllers u(t) on [to,t I]

which steer _u(t) from xo at to to points Xl contained in

the lower boundary of K(tl) (written 8K-(tl) ). Such controllers

will be called extremal and they.....wil! play a o_gn±_±cant__°_ part

in the selection of optimal controllers.

Let u(t) e n on to _ t !_bean admissible controller

for the convex control process

= F(x)

]_ = A(t) x + B(t)u(t)

with initial point Xo = (0'Xo) at to . If the corresponding

response _u(t) has an end point x(tl)CSK-(tl), then u(t)

is called an extremal control and Xu(t ) an extremal response

on [to,tl_.
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so that

.(t)B(t)u(t) - Max [_(t)B(t)u} almost always on [to,h] •
ucn

/Proof: Assume u(t) on [to,tl] is extremal and so steers
A

_(t) from (0,Xo) at to to Xlg _-(tl) at t1. Choose _(tl) -

= (_o,_(tl)) to be a nonzero vector normal to w directed into the

halfspace defined by _ which does not meet K(tl). Note

_o _ O. Then let _(t) with _(tl) as above be the response of the

adJolnt equation corresponding to the controller u(t).

The controller + G(t) = sgn{_(t)B(t)] defined for

t ¢ [te,t 1] is admissible and

_(t)B(t)_(t) = Max [_(t)B(t)u]
uen

on [to,tl].

Let _E be an interval of total length c > 0 contained

in _ - [to,t I] whereon

6 + _(t)B(t)u(t) < Max [_(t)B(t)u] for some 5 > 0.
ucQ

For given 6 > 0 consider the modified controller

ug(t) - u(t) on J - v¢

-G(t) on
E J

+ sgn [} - -I if [} < o
= o IfK}-o

= +l if K] > o
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The adJoint response _(t) = (So(t) , _(t)) corresponding

to a controller u(t) is a row n+l vector satisfying the

differential system

_F 0
= -n A(t) - _o _ (Xu(t))

_o = constant _ O.

where Xu(t ) is the response of £) corresponding to the controller

u(t). Define u(t) on [to,tl] to be a maximal controller in

case there exists a nonvanishing adJoint response _(t),

no < 0, so that n(t)B(t)u(t) = Max {n(t)B(t)u} a.e. on [to,tl].
-- ue_

In the following theorem 2 it is shown that extremal

and maximal controllers are the same.

Theorem 2 Consider the convex control process¢

= F(x)

= A(t)x + B(t)u(t)

with initial point x0 = (0,Xo) at +_-_,.._to . An admissible

controller u(t)C _ on Lto,t I] is extremal for £ if and only

if it is a maximal controller a that ist if and only if there

is a nonvanishin_ ad_oint response _(t) of

(t))= -n A(t) - no _ (xu

no = constant _ 0

tThe necessary portion of %his theorem follows from L. S.

Pontryagin's Maximum Principle (7). For completeness the

simple arguments to establish the necessary part are
presented.
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and calculate

d_(t)_ = _c + B_c
dt

and

dt = _x + _x, where refers to a response of

corresponding to the modified controller uc(t ).

Integration from to to tI yields

_ 3F'xlt))Txc(t)_((t) xc(t l) - _(t)xcCt o) = 1 [_B A(t) + B_ _

O

+ _ tl _(t)[A(t)xc(t ) + B(t)u(t)_- F(xc(t))dt

to

and

_ 8F (xCt))_x(t)_(tl)_Ctl) . _(to ) _(to ) = 1 ___ ACt) + _-x

0

+ _(t)[A(t)x(t) + B(t)u(t)]- F(x(t))_t for _o = -1.

Combining terms and using the assumed continuity for F and
_F
B-_we easily find that

_(tl)xc(t l) - _(tl)x(t l) h 8 c + o(c) for c sufficiently

small where o(¢) corresponds to terms of higher than first

order in c, and therefore for c sufficiently small

_(t)x¢(t l) -_(t 1)x(t l) > O, contradicting the construction

of _(tl) as the outward normal to _(tl) at Xl"
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Hence there exists no such interval To' so

_(t)B(t)u(t) = Max _(t)B(t)u almost everywhere on _.
u_

Conversely, assume that u(t) and corresponding response

_(t) # 0 are such that

s(t)B(t)u(t) = Max _(t)Bu
uc_

a.e. on J with _o _ 0° Let G(t) be any controller in

with corresponding response x_(t). If we calculate

A M AA

d_Xu and d_x_ as above,

dt _t

and then integrate from t
O

of F(x) we find that

to tI using the assumed convexity

_(t l) Xu(tl ) > _(t I) x_(t l) : _(tl)w

where w is any point of K(tl). Since l_(tl)l _ O,

and _o _ 0, the above inequality implies that Xu(tl) is

contained in the lower boundary of the compact set K(tl)

with convex lower boundary and hence u(t) is extremal
QED.

Theorem 2 indicates that to stay at a lower boundary

point we must continuously steer maximally in the direction

of the vector _(t). This remark is summarized as a corollary.

Corollary 2.1 Let u(t) on [to,t 1] be an extremal controller

for _, with correspondin6 response Xu(t) and adJoint response

_(t) so that,

_(t)B(t)u(t) = Max
uc_

_(t)B(t)u
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a.e. on [tn,t]]. Then on each subinterval [tnX] C [tn,ti],

u(t) is als0 an extremal controller with xu(x)c_(x).

Moreoyer _(x) is an,exterior normal to _(x) at _(x).

Proo____._fReplace tI by x in the proof of theorem 2 to obtain

that

_(_)_u(_)h _(_)_(_) = _(_)w(_)

for all w(x) in K(x). From this inequality the conclusion

of the corollary can be drawn.

We next show that the set of attainability _(tl)

depends continuously on the parameter tI.

Define the distance between a point p and a compact

set G_(R n to be
I

d(p,G I) = Min IP-gl

gcG I

and define the distance between two compact sets GI, and

G2C Rn to be

d(G2,G2) = Max{Max d(Pl,G2), Max d(P2,G I)}. Here

PleGI P2eG2

n

Ipl: • Ipil.
i=l

The set K(t2)C Rn+l varies continuously.with t2 if

given an c > 0 there exists a 5 > 0 so that for It2-tll < 5,

d(K(tl), K(t2)) <
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Lemma I Consider the system _ as above with attainable set

K(tI_R n+l. Then K(tl) varies continuously with tI < _.

Proof We need only show that each point x(tl) of K(tl)

is close to some point x(t 2) of K(t2) and conversely. That

is, we need show that given ¢ > 0 there exists a 6 > 0 so

that when Itl - t21 < 6 there exists x(tl) ¢ _(tl) such

that Ix(tl) - x(t2) < "_ for each _(t2) e K(t2) and con-

versely.

Let ul(t ) be an admissible controller on [to,tl+l] and

xl(t) the corresponding response. For t I _ _2 _ tl +i

calculate

x_(t2)- x_(tl)= I_ F(Xl(t ))dt -I_ F(Xl(t))dt

and

xl(t2,x1(tl,=.(t2,o(o,i (s,u1(B,do
- ¢(t2) It I @(s)-l[B(s)u!(s)]ds

_0

+ [_(t 2) -®(tl)] _,(s) "l B(S)Ul(S)ds ].

So

x_(t2) - x_(tl) = ,[]2 F(Xl(t))dt
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and

xl(t2}_ xl(tl): _(t2) _t2_(s)-lul(s)ds

tl @(s)-i h(S)Ul(S)ds _
+ [_(t 2) - ¢(t l)][_tO

Since A(t) is bounded'and continuous on [to,tl+l] so is

@(t) and therefore there exists a constant C1 so that

l@(t)l < C 1

and

l_(t)-ll< eI on [to,tl+l].

i(t ) and
Also since B(s) has bounded continuous elements bj

ul(t ) is bounded and measurable there exists the constant

C2 so that

t1
I_ ¢(s) -I B(S)Ul(S)dsl < C2° Integration is a

t
continuSus operation, therefore, given an e > 0 there exists

a 8 > 0 so that

t F(Xl(t))dtl < _,

£

¢(s)-i B(S)u l(s)dsl < _2

for It-tll < 6 < 1.
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Hence
6 E £

Ixl(t2) - xl(tl)l < _ + C1 3-_i + 3-_2 C2 : e

for It2 - tll < 6 < i.

The other way we consider ul(t ) = u(t) on [to,t I] where

u(t) steers to _(tl) and extend it to _to,tl+l] by letting

ul(t ) = u(tl) for t ¢ [tl,tl+l]. The above calculation is

then repeated to find Ix(t2) - x(tl) I < c for It2-tll < 8 < 1

and so K(t l) varies contihuously wlth t1.

Theorem _ Consider the sygtgm $ as above with initial data

_o = (0'xn)' compact restraint set O, and set of attainability

K(t]). Let the target set G = {x°,xl 0 ! x° ! 8, x e _] where

8 > 0 is a constant and G is a compact set of Rn. Suppose

G meets the interior of K(tl), then there is a 6 > 0 such that G

meets _(tl) for It - tll < 6.

Proof Since G meets the interior of K(tl), there is a point

e(GN Int. K(tl)) and a ball neighborhood N(p) of radius

r > 0 contained in K(tl). Consider the hyperplane x° = p°-r/2

of Rn+l and in this plane pick n+l independent points _l'

x2"''Xn' Xn+l of the boundary of the ball N(p), all equally

spaced. Let _l(t), _2(t),...Xn(t), Xn+l(t) be responses

of _ with initial data Xo = (O'Xo) and corresponding to

controllers ul!t ), u2(t!,...U_+l(t), to ! t ! t I +l, which

are such that xl(tl) = Xl,...Xn+l(tl) = Xn+l" Pick

1 > 8 > 0 so small that for It-tll ! 8 the points xl(t) lie

within spheres of radius r/10 of the points Xl...Xn+l. This

being possible because of the previous lemma 1.
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Consider the convex combination of controllers uk(t ) =

= klUl(t ) + k2u2(t ) +...kn+lUn+l(t ), ki _ 0, Z ki = 1
(Note lukil _ l) and the corresponding responses xk(t)

of _ with initial data (O,xo). For each fixed t, lt-tll _

these response end points xk(t) sweep out a surface section

S which lles below the plane x° = p° by convexity_ above or

on the plane x ° = 0 because of the positive nature of F and

intersect the line segment {0 < x ° < pO x=p} (see proof

of theorem 1). Hence G meets K(t) for It-tll < 6 < 1.

We now consider the problem of existence of optimum

controllers.

Theorem 4 Consider the system 2 as above with compact restraint

set 0 = [ul lull _ i, i=l,2...,m]CR m, initial point (O,Xo)cRn+l

at time to and constant compact target set G = [x°,xl0 _ x ° ! B,

xgG] for R > 0. If there exists an admissible controller u(t)C N

steering xo to G on to _ t _ tI then there exists an optimum

controller (also admissible) steerln_ x to G in minimum time

duration t* - tO .

_roof If (0,xo}¢ G then t* = to and optimum control is not

required. So assume (O,Xo)_ G and consider the set of attain-

ability _(t l) for tI _ to . Since there is one controller

which steers (0,Xo) to G theset K(tl) meets G for some

tI > to . Define t* to be the greatest lower bound of all

times t I such that K(tl) meets G. By the _ontinuous dependence

of _(tl) on tI the set of times for which K(tl) meets G is

a closed set in R 1. Hence t* is the first time K(tl) meets

G and therefore pick as the optimum controller u*(t),

t@ _ t _ t*, a controller which steers to

K(t* )_ G.
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The next theorem asserts that for optimum control we need only
consider points of the lower boundary of the set of attaln-
ability and therefore by theorem 2 extremal controllers.

A sufficiency condition is also included.
A

Theorem 5. Consider the system £ as above with compact

rectangular restraint set n, initial point (O,Xo) at _o

and compact convex target set G = {x_xlO ix ° ! 8; xcG;

> OJ. Let u*(t) be a minimal time optimal controller

steering x*(t) from xQ to G. Then u*(t) is extremal,_that

is, there exists a nonvanishin_ ad_oint response _(t) =

= (_o,_(t)) with B o ! 0 so that

_(t)B(t)u*(t) = Max {_(t)B(t)u]
u£n

almost always on [t_,t*] with _(t*) an outward normal of
m VA • _ "

_(t*) at x*(t*) on 8K(t*) and B(t*) satisfies the transver-

sality condltlon_ namel_ _(t*) Is normal to a supportin_

hyperplane N of G and the set of attalnabillt_ _(t*) which

separates K(t*) from G.

Moreover a if for each point [3] _G there exists a

_o _Q _no__nm_aximal controller _(t)c _ so t.._t on < t < a the

response x_(t) initiating at x _ x_(Eo) is contained in G,

then when u(t) is an admissible extremal controller steerln_

xo to G by means of a response satisfying the transversallty

condition it is an optimum controller.

Proof By assumption there exists a controller steering Xo

to G so G meets K(t*). Suppose G meets the interior of

K(t*). This is impossible because then G meets the interior
A

of K(t) for It-t*l < 8, 6 > 0, by theorem 3 and this contra-

dicts the optimality of the controller. Hence 8G meets

8_(t*) so that the optimum controller must steer to 8K(t*).

We must show that it steers to a lower boundary point to con-

clude that it is extremal. This follows at once because

K(t) always first makes contact with G at a lower boundary
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point as can be seen by considering how the compact set

_(tl) with convex lower surface moves with respect to the
set G. Thus if u*(t) is optimal it is extremal and by
theorem 2 there exists the nonvanishing adJoint response

(t) so that

_(t)B(t)u*(t) m Max _(t)B(t)u
ucn

where _(t*) satisfies the transversality condition since G
and the lower boundary of K(t*) are convex they can be
separated by a supporting hyperplane N and we choose _(t*) to

be normal to N and directed into the halfspace containing G.
When u(t) is an admissible extremal controller steering

to G and satisfying the transversality condition ito
must be an optimum controller if G has the property that
through each point _G there passes a nonmaximal response
which remains forever in G. This follows because once G and

K(t) come together the interior of K(t) has a nonempty
intersection with G so that the transversality condition

can only be satisfied once and therefore'there is only one
time, namely t*, for which an extremal controller can steer
to G and satisfy the transversality condition. Thus any such
extremal controller satisfying the transversality condition

is an optimum controller.
Q.E.D.

We have therefore reduced the problem of finding an
optimum controller for the approximation problem to that of

finding a solution to the two point boundary value problem
as given by the 2n+2 equations:
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T

_° = FCx)

= ACt)x + BCt) Max {n(t)B(t)u}
ucO

8F _
= -_ A(t) - _o x_ (x)

4o = o (no_ o)

with boundary conditions X(to) - Xo, x(t*)_ 8 G with q(t*)

an interior normal to G at x(t*).

3) An Example of Approximate Bounded Phase Coordinate Time

Optimal Control °

We shall consider a very simple example to illustrate some

of the theory of the previous section. Consider a siH@le

mechanism with position coordinate x and velocity coordinate

y. Suppose it is desired to bring the mechanism to rest by

means of a thrust force u(t) whose magnitude is bidirectional

but limited to be less than 1 in magnitude and suppose the

velocity is not to exceed .6 in magnitude.

the linear system

_=y

'= u(t)

with lu(t)l

That is, consider

< l, A = {x,y l lyl < .6}, x(o) = lO, and y(O) = O.
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1Pick - ½)2 fory Z
1

= o for lyl i

i

We sha&l later determine the parameter 8 > 0 so that the

strict bound on.y is not exceeded, Problems in which the

bound is soft are more easil_ handled since then we can

generally pick B ahead of time and in;a Straightforward manner

solve the two point boundary value problem. Here we have

picked F(x,y) so that we are constraining the response even

before the boundary of A is exceeded in hopes of maintaining

the strict bound on y. To solve this approximate problem

it is merely required that we find a solution of the

T

system:

eO •

x = F(x,y)

_=y

_ - Max [n2u]
ucfl

_o _ o (noi o)

_F
42 _-n i - no

with x°(Oi = O, x(O) = i0, y(O) = O, x°(tl) ! 8, x(tl) = O,

Y(tl) = 0 for some tI > O.
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A simple calculation shows that picking B = .08,

_o(0) _ -lO, _l(O) = -1, _2(0) _ -.55 provides a time

optimal solution for this problem. A plot of this response

is given by figure 1. Note in this problem the exact

optimum solution was obtained, but in general one would pick

different F(x,y)ts to get better approximations.

4) Remarks on the approximate bounded phase coordinate problems

with integral cost

As before consider the linear control process

£) _ = A(t)x + B(t)u(t)

satisfying the conditions stated at the beginning of section

1. As a cost functional of control consider

C(u) = g(x(T)) + _ {f°(x,t) + h°(u,t)}dt
O

where T = fixed time > to and the real functions f°(x,t) and

h°(u,t) are continuously differentiable and f°(x,t) is a

convex function of x for each t.

The problem of optimal control is to pick an admissible

controller u(t) on [to,T] so that the response Xu(t) of £

moves from x o to a target set _CR n at T, (G may be whole

space) and minimizes C(u) with the entire response Xu(t)

contained is the closed convex restraint set A.

As before we introduce the convex differentiable function

F(x) satisfying the conditions

F(x) > 0 if x # A

0 if x c A

The approximation problem is obtained by adding F(x)

to the integrand of the cost functional C(u) to obtain a

new cost functional
T

g(x(T)) + It ° {f°(x,t) + kF(x) + h°(u,t)}dtCk(u)

T

_ {f°(x, t) + hO(u,t)]dt,
to
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here k > 0. If k is sufficiently large then one would expect
that the contribution from the term X F(x) can be small only

if the response stays near A or within it. The approximation
problem is to find that controller u(t) which minimizes

Ck(u ) and steers to SCR n.
We shall assume that h°(u,t) is convex in u for each t

or that the controller is bounded and h is a positive function
of u for each t. In either case the previous theory can be
applied after slight modification by noting that _°(x,t)

= f°(x,t) + k F(x) is a convex function of x for each t since
both fo and F were convex functions and by noting the contri-
bution to x°(T) made by the terms h°(u,t). That is, the

problem has now been cast as one which is covered by the
sufficiency results of reference 5 which are also necessary

Kreference 7S and can be obtained as a slight modification
of the results of section 2.
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NOTES ON THE RESTRICTED THREE BODY PROBLEM:

APPROXIMATE BEHAVIOR OF SOLUTIONS NEAR THE COLLINEAR

LAGRANGIAN POINTS

C. C. Conley

Introduction

The purpose of these remarks is to .describe in some detail the

geometry of solutions of the restricted three body problem (as viewed

in the rotating coordinate system) near those equilibrium points which

are collinear with the two positive masses.

We deal only with the linearized equations, but make some quali-
tative observations which can be carried over without difficulty to the

nonlinear equations for suitable values of the Jacobi Constant.

This report is intended tO be the first in a series whose ultimate

aims include an existence proof for the "periodic" solutions discovered

numerically by M. Davidson [1]. Whether or not this can be accom-

plished remains to be seen, but it does seem clear that a thorough

understanding of the behavior of orbits near the equilibrium point will

be required. More will be said about this question in later reports.

From the work in this report we obtain the following qualitative pic-

ture of solutions of the linearized equations for values of the "Jacobi

Constant" slightly above that of the equilibrium point.

The projections of orbits into the configuration space are constrained

to lie in the region R between the two branches of a hyperbola symmetric

with respect to the line, f, joining the positive mass points, which line
is contained in R.

We will generally restrict our attention to the portion of the phase

space corresponding to a closed interval I of _ about the projection of

the equilibrium point. Recalling that the value of the integral is fixed,
we will see that this portion of the phase space is homeomorphic to
Sz X I (S z is the two-sphere) and so may be viewed as the space between

Z-concentric spheres together with the bounding spheres.

N65 330,58

247



If I is large enough we will see there there is exactly one closed

orbit in this portion of the phase space. This corresponds to one of the

family of periodic solutions which are known {by a theorem of Lyapounov)

to exist in a neighborhood of the equilibrium point even for the nonlinear

equations.

There are four "cylinders" in the phase space which abut on this

periodic orbit and which are invariant under the flow. Two of these run

to the outer bounding sphere and two to the inner. One of each of these

two pair of cylinders corresponds to a family of solutions which is asymp-

totic to the periodic solution as the time goes to +oo; the others to fami-

lies asymptotic as time goes to -0o. These cylinders act as separatrices.

They separate those solutions which go from the inner to the outer sphere

(or vice versa) from those that do not: in the language of the configura-

tion space, they separate those solutions which make a transit of the

region of the equilibrium from those which do not cross this region.

(The existence of such cylinders for the restricted problem is apparent.

From a theorem of J. Moser [2] it can be seen that they are described by

real analytic functions near the equilibrium point.)

The projection of these cylinders into the configuration space covers

the union of two infinite strips the boundaries of which are the envelop-

ing lines of the solutions asymptotic to the periodic solution (figure I).

These four enveloping lines (which are tangent to the hyperbolas bound-

ing R as well as to the periodic orbit) divide R into several regions

and we will be able to determine the nature of solutions in these differ-

ent regions. Further description will be easier to give later.

An amusing result is that exactly one solution from each of the four

cylinders of solutions asymptotic to the periodic solution has a cusp

(as viewed in the configuration space). A modification of this statement

holds as well for the restricted three body problem. These four cusp

points determine arcs on the hyperbolas bounding R, and any solution

which cusps on these arcs is making a transit of the equilibrium region.

A statement which is perhaps a little more useful is that there are

two unique solutions which are "best" for making a transit of the equili-

brium region in that they take the least time. One of the (possible) dif-

ficulties in using orbits which correspond to the solutions of M. David-

son is the amount of time it is possible to spend in the region of the

equilibrium. • It may be useful to have a simple criterion for decreasing

The values of the Jacobi Constant considered here are small relative

to the ones usually considered.
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this time. An approximate means to determine the "best" orbit is given

in statement eleven; a more accurate one could be derived using the

result of J. Moser [Z].

As stated above, these remarks have been collected primarily with

a view to later applications. However, it is hoped they are of some

value in themselves in gaining insight into the nature of solutions of

the restricted three body problem.

1. The Equations

Without going through the arguments, we can state that the linear-

ized equation near the equilibrium points in which we are presently

interested form a hamiltonian system with Hamiltonian function:

(i) 1 )z )2H{Xl,Xz,Yl,Yz) =_- {(Yl-C0xz + (Yz+¢_xl - axlz + bxzz}

(¢0, a, b are positive constants)

The equations are

(z)
x= Hy

= -Hx.

In these equations, _ is the frequency of rotation of the coordinate

system; we assume _ is positive.

The constants a, b will be arbitrary positive constants in our dis-

cussion. In the case of the equilibrium point between the two positive

masses of the restricted problem, a = Zb. _ If the mass ratio is that of

the Earth and Moon, then with ¢o = 1, a is slightly larger than 8.

We introduce the following notation:

(3)
8 = (x,,xz,y,,yz)

-a 0 0 1 (I 0
S : ( 0 b ); I= (-1 0 ) ; I:.0 1 );

This statement is also true of the other two equilibria considered,

however, the next is not.
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0 I
_= (-I 0 ) (3)(cont.)

¢o21 + S _I
z = (_I I)

Our equations are then written as

^ 1
H(_) = ; (_, _._I)

:Jfi-, = Jz_.
U

(4)

Now to make the computations easier we introduoe the non-canonical

transformation

_ = Au

A=t 0i )

(5)

The equations then transform to:

= Bu

- o IB = A IJZA = ( -2_]"

(6)

and the integral is given by

H(u) H(Ad') = 1= _(u, _u)

E = ATzA = (S 0
0 I)

(7)

If we now write u = (xi,xz,zi,zz), the equations above give _, = zz.

Thus ifwe consider projections of orbits in the x-plane, z = (zl,zz) cor-
responds to the tangent vector.

Inthis notation we have for the integral:

1 2 x# + bx_)H(u) = _(z, + zzz - a
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Z. The Phase Spa, ce

We will be primarily interested in those orbits for which

(8) H = h > 0,

and will describe the projections of these orbits in the x-plane.

Statement 1. a) For H = h, the projected orbits arc constrained to move

in the region R giv.en by

R: -a x_ + bx z < h.

b) If h >_ 0 R is a connected region, otherwise it has two components.

c) If h > O, the phase space is homeomorphic to Sz X E' (Sz is the

Z-sphere, E' the real line). We will be most interested in that part of the

phase space for which [xl I < c > O. This region can be considered as the

space between two concentric spheres including the boundaries.

Proof: Only part c) needs comment. To see this statement, consider the

line x i = c I. On this line we have

+ + b - Zh+

So the corresponding points in the phase space form a Z-sphere. The rest

follows.

3. Computations

Statement Z. a) The matrix B has one pair of real eigenvalues and one

pair of imaginary eigenvalues. These we denote by

+__, +_iv where _,v >0.

b) The corresponding eigenvectors can be chosen to be:

-_ iv -iv

Vl = v2 = Wl = iv WZ "Wl= -iv
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where

c)

where

d)

where

(Note:

and T are real, v >0; T < 0 (cf. e) ofthis Statement)

The general solution is of the form

u(t) _,e_tv, + _ze -_t m= vz + 2Re _,elVtw,)

_*,_z are real, 13 is complex.

The value of the integral on the solution is

1 (u(t),E u(t))= Otlocze I + [6 [Zez
Z

e)

e I - (v,, E vz)

ez = (w,, Ewz)

the inner product is the real one even when vectors are complex. )

The constants _, v, 6, T, el, ez satisfy:

I) a- Z_0v_- _z; in particular, _t> 0

Z) -l_r+ 2to_= z_

3) a + 2wTw--- vZ; in particular, T < 0

4) -bT + Z_V = --vZT

5) (V, Evi)=-a+ l_rz +Ixz +_z_z = 0

6) (w, Ewx)=-a- br z - v z + vZ'r z = 0

7) (v, E wl) = -a + ibro-+ i_v - _rv = 0

8) e, = (v, E Vz)=-a-by z -_z +_z_z

= _Z(b_Z + z) < 0

9) ez -(wlEwa)=- a+bT z +v z +VZT

= Z(bv z +v z) >0
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10) Zab(v z +Tz);ez(a+ by z)

llJ _Tv ; a ; bTv =- _v (from 7))

0 I
Proof of Statement Z: (Recall B = (_S -2¢0J )

To prove parts a) and b) and equations 1) - 4) of e), we first observe

that any eigenvector must have a non-zero first component which we can
take to be 1. The form of B then forces the eigenvector to be

u z {1, p, k, pk} where k is the eigenvalue. Now the last two equations

in the system Au = ku require that

a - 2¢okp : kz

-bp+ 2cok z k zp

Elimination of p gives

k4 + (b-a+ 4_ z)k z - abz 0

and parts a) and b) as well as the first two equations of part e) follow.

Part c) needs no comment.

Parts d) and e) follow from general considerations:

Lemma 1. Let v and w be eigenvectors of the matrix J_. where Z

is symmetric and J is skew symmetric and orthogonal, and let the cor-

responding eigenvalues be k and _ respectively.

Then either

or

Proof: Since _ is orthogonal,

(v,r.w) = (_fv,Y r.w) - _(:fv,w)

(Zv,w) = (Yzv, Jw) - x(v,.¢w).
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The result follows by the symmetry of _, and skew symmetry of J.

To apply this lemma to our problem we use the fact that, since
B --- A-1j 2: A, the vectors Av i and Awi are eigenvectors of _ Z. (The

notation is that of § 1. )

Part d} and equations 5) through 9) of e) now follow. The remaining

equations and statements in e) are proved with a little algebra. The

harder ones will be seen geometrically later so the computations are
omitted.

Statement 3. If u(t) is a solution such that u(O) = (xx,xz, z,, Zz ),

then the constants a, _ (Statement Z, c) are given by.:

ela, =- ax, - b_xz - _zl + _Zz = (u, Evz)

elaz =- axl + b_xz + _zl + _zz = (u, E vl}

ez_ -- - axI - ibTXz - ivz, -VTZz x (U, EWz)

Proof: This follows on dotting the equation

u(O) = a,v, + azVz + _w, + _wz
with

Evz, Ev,, Ewz respectively, and using 5)- 9_of Statement I).

where

Statement 4. (Recall that

H(u) = 1 {z_ + zzz -ax# + bxza }

= alazel + ll31'-e,_

e, < 0; ez > 0).

Consider the projection in the x-plane of solutions in the integral
surface

H(u) = h> 0

The solutions in the integral surface divide into classes as follows:
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I) The (unique) periodic solution: _, = _z - 0

Z) Solutions which are asymptotic to the periodic solution as t--0o

(t_ -co):

_, = 0 (_z - O)

3) Solutions whose x, component tends to + 0o (- oo) as t -_ +_0o:

ax,_z > 0 (_,,_z < 0).

These are solutions whose projected orbits in the x-space lie
in ahalf space xl > c or x, <c. They do not make a"transit" of the

equilibrium region.

4) Solutions whose x, component goes from -oo to + oo (+ oo to

-co) as t goes from -oo to +oo:

=, > O, _z < 0 (_, < O; =z > 0).

These are the solutions which do cross the equilibrium region.

Proof: By inspection of the corresponding general solution.

We are particularly interested in the solutions of class 4) which, in

the case of the equilibrium between the two positive mass points, can

be interpreted as solutions going from the earth side of the equilibrium

to the moon side (or vice versa). Clearly the most "efficient" {least time

expenditure) such orbit is that for which _ = 0 since the "_-portion" of

a solution contributes only useless oscillation -- we will come back to this

point later.

Interpretation for restricted Problem:

Solution i) corresponds of course to the periodic solution about the

equilibrium point of the restricted problem whose existence is guaranteed

by a theorem of Lyapounov.

The solutions of Z) correspond to the four families which are asymp-

totic to the periodic solution as described in the introduction. Since the

argument of _ is free and can vary on a "circle, " these four families
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are easily seen to be "cylinders" which abut on the periodic solution•

One can now check that two of these cylinders "go to +co" and two

"to -o0" (as t -> +oo), i.e., the region of the earth (say) or the moon {resp. )

Again, one easily checks that one of each of these pairs is asymptotic to

the periodic solution as t goes to +0% the other as t goes to -oo.

The solutions of 3) are those which enter the region of the equilibrium

only to return whence they came while those of 4) make the transit.

While we have considered only the linearized equations, simple con-

siderations ensure the same qualitative picture for the equations of the

restricted problem.

Statement5 If x z > 2h(a- Mz) c z
• a_Z =

then a) xiz, >_0 _ six * > 0

b) xiz z < 0 ==> azX, > 0

Interpretation: If a solution crosses the line xl = c, going away from the

origin, then if c, > c, the xl component of this solution must tend to

+oo. If a solution crosses the line coming toward the origin, it's x, com-

ponent goes to +oo as t-> -0o. Corresponding statements hold if

X! = C! <-C.

J-LIn particular, a solution of class 2% nr 4) (_i_z _-n) can cross uLe
-- --m --- ._ v

line xl = c, only once and must do so with z I # O. We will make use of
this remark later.

Also, we can see that a solution crosses both of the lines x 1 = +_ cl

if and only if _,_z < 0. This comment allows us to give a precise geometric

meaning to the statement that "a solution makes a transit of the equilibrium

region. " A similar definition works for the restricted problem for the same
reason.

Proof of Statement _.

a) We have (Statement 3 )

el_ 1 = _ ax I - b_x z - _z I + _Zz_

where e, < 0 (Statement 2), e), 9)
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Thus

sgn x,=z = sgn(ax_ + bvxixz + _z,x, - _XiZz)

Since xzz, >__O, we need only show that

ax z > Ib_x, xz - _X, Zz I

We estimate (Schwarz)
1 1

Ib_x, Xz - _vXiZz I <__Ixil(bv z + _z_z)_(bx z + zzZ)x

Using Statement Z, e) I) and the energy integral we have

a- _z = bvZ+ _zvz

bx# + z#< Zh+ a x#

so that

1 1

Ib_xmXz - _x, xzl < Ixil(a- _z)_( h+ axe) _

I

- Ixil(aZxf + 2ha- 2h_ z - a_Zx_) x

This last quantity is less than ax_ provided Zha - Zh_ z - a_Zx_ < 0

which is the hypothesis. A similar proof holds for part b).

O

A statement stronger than the above can be proved if we place a

restriction on the constants a and _: Namely

Statement 6.

If

Recall the equations are given by

_, =z, ; _, = - Z_zz+ ax,

xz = Zz _z = Z_oz, - bxz,

8_h
x, = c, ># (az _ 4_a)
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Then z, >__0 implies the corresponding solution never returns to the

line xl = c,. (Also xl(t)-_oo) Furthermore if z I = 0, c, is an ab-
solute minimum for x,. A similar statement holds if

xz = c, <- az _ 4_

Proof: The proof consist of showing that &, > 0 under the above circum-
stances. We have:

[Zz ] <_/Zh + ax,z

so that

_< <a2x 

The last inequality being the hypothesis. The result now follews.

This statement has no force unless

az - 4_a >0

which situation does however hold for the equilibrium point of the

restricted problem between the two positive masses. (a > 8; _ = 1).

Geometrically, we see from Statement 6 that the points where the
x, component of _ _.olution can have a maximum must lie to the left of

the line x, = _.-_aZ-_a" Such a restriction is valid only when

a z - 4_a >0 as can easily be seen. This remark will be useful in a later

report.

Statement 7

The projection of the periodic solution in the x-plane is an ellipse

with minor axis of length in the direction of the x,-axis and

major axis of length - 2T [_-k-- in the direction of the xz-axis.

Proof: {Assume 15 is real. ) The projection is given by

xi(t) -- Z Re(_e ivt) = Z_cos vt

xz(t) = - ZT Im{_e ivt) = - ZT [5sinvt
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Also the energy integral gives

_Ze z =h

That ITI > 1 follows from Statement 2, e}, 6):

vz +a

0<Tz - v z - b > i.

The result follows.

Statement 8. (Recall the solutions with _,_z = 0 are those asymptotic

to the periodic solution. )

a) The envelopes of projections in x-space of orbits with

are the straight lines

x z =-_x, + (a-_ zb)Jz_b

/± '-= - _x, + 2 .(_z + Tz)z.
-- _4e z

_l =0

The corresponding envelopes for

xz = _x, +__(a -CZb) Zh

ez = 0 are-

b) All four of these lines are tangent to the boundaries of R (i. e.,

of the region of x-space wherein solutions must move -- see Statement 1. )

c) The points of tangency lie on the lines

x, = _+_J2bh(ag b_ z) =__IQZh(a_b_Z)T

(See figure I)

Proof of Statement 8

a) If _, = 0 we have (Statement Z)
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lm

-tzt ivt)xi = eze + 2 Re(#e

= -FLtx, - _aze - 2T Im(#e lvt)

= -¢xi + ZvRe (_e ivt) - ZT Irn(pe-ivt)

The extreme values of Xz for fixed xl are obtained by varing arg #.
These are computed to be

l

x, = - +__z [# 1 + 2 )3,

Finally, we have 1_ ! = "_/h from the energy integral which gives one
ez

of the alternate expressions in a). Observe that the extreme values are
achieved.

b) We could prove b) by computation; however, the following

geometric argument carries over to the corresponding statement (that

"envelopes of solutions asymptotic to the periodic solution touch the
boundaries of R") for the restricted problem:

We first observe that we can obtain a space homeomorphic to the

phase space as follows: First deform R to an infinite strip (i. e.,
squeeze the boundaries down to straight lines). Noting that at each

point of R (except the boundaries) there is a "circle" of possible vel-

ocities (i. e., z_ + Zzz ; const > O) we cross the infinite strip with

a circle to obtain a "pipe_i. e., the space between two coaxial cylinders.

The length along the cylinder corresponds to the xi coordinate.

For each fixed xz there corresponds an annulus of points; the radial

variable in this annulus corresponds to xz, while the angular variable

corresponds to the direction of the velocity vector z = (zi, Zz). The
inner and outer boundaries of the annulus correspond to boundary points

of R. These boundaries should be identified to (different) points since

z_ + zzz is zero on the boundary of R; however, we neglect this point
for the moment.

Now consider the "cylinder" of solutions with a 1 = 0 say. For

fixed xl, the corresponding points on the cylinder make a closed

loop in the pipe.

Now if x, > c (Statement 5), and a, = 0, then zZ < 0. Thus the
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corresponding "circle" does no___!tgo around the hole in the pipe. On the

other hand, the periodic orbit does encircle the hole since the velocity
vector on this orbit goes through all angles. Since the cylinder abuts

on this periodic orbit, some section of it must enclose the hole. It fol-
lows that this cylinder must cross one of the bounding cylinders of the

pipe.

This implies that some orbit with _l = 0 must touch the boundary

of R and so the envelopes of these orbits must cut this boundary.

However, they cannot go out of the region R, and therefore are tangent
to the boundary.

Part__.____cc)(and alternate expression in Dart a))

From parts a) and b} it follows that, for example, the equations

ax_ - bxz z + 2h=0

I

xz =-_xx +Z4 --h (_z +Tz)_
ez

have a unique solution for x I.

This means the following quadratic equation has double roots:

1

(a- b_)x{ + 4b¢4 --h-h(vz + TZ)3 _ 4b--h-h{_z + Tz) + Zh = 0.
ez ez

The condition for a double root is:

4bZ_Z _hh (o.Z + TZ} = (a- b_ z) {2h - 4b____hh{o.z + TZ}}
ez ez

which'reduces to the equation:

e_ {a - by z )
Zab

This equation (which is Statement 2, e), 10}) could of course be

verified algebraically from the other equations of e); the algebra is left

out since the geometric proof suffices.

The remaining computations are now easily completed and similar

arguments complete the proof of Statement 8.

iI
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The following statement enables us to give a fairly clear picture of

the approximate location of those orbits which make a transit of the region
near the equilibrium point {_i_z < 0}. This picture carries over to the

restricted problem with little difficulty and suggests a "possible" means

of giving an existence proof for the periodic orbits of M. Davidson.

(However, the present author has not been able to carry out any proof as
yet. )

Before giving this statement, we state a lemma. In the lemma,
cos-l{y) denotes that angle between 0 and _r whose cosine is y.

{provided < I)

Lem m a:

where

-1
cos8 + _ sinS>y _ IX - 81 _< cos

cosX-a; sinX-

the equality signs hold simultaneously. If yz >_z ÷ _z the inequality
never holds.

Statement 9

Let z, = pcosO ; zz = 9 sin8.

If

Let x = (Xl,Xz)

YZ = - axl + b_ x_
_P

denote any point in R.

9 Yz =
ax, - by xz

_P

cos X, - 1 cos Xz " 1

sin Xi - - _ sin Xz ~ v

a) Then for [yz[ < I, wehav_..

1 Yi
-> 0 le-xil _<cos- 0-Z} 1(I+

i

1

b) Itfollows (Statement 8)that IYi[ < (i+ ¢z )_

between the lines enveloping the orbits with =i = 0

on the boundary of these strips.

only in the strip 1
and that [¥i[ = (l+_Z) x
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Proof of Statement 9

and

From Statement 2, we have

Jells, = a x, + bcxz + Mzl - M_zz

[e,I_2 = ax, - bcx2 - _z, - _z2

Replacing z, by p cos8 and z z by p sin8 we set

_i >0 <m_m cos8 +¢ sin8 > - (ax_ + bcxz)

_z >0 _ cos8 + csin8 > (axl - bcxz)
-- _p

An application of the lemma completes the proof.

Statementl0 (consequence of 9)

From 9, it follows that orbits with _z = 0 cut the line Yz - 0

in a direction orthogonal to the enveloping lines of these orbits (i = i,2).

Thus the lines _z = 0 must pass through the points of tangency of the

enveloping lines with the boundary of R."

We further observe that to the "right" of the line Yi = 0, Xi is

acute, while to the left of the line ¥i = 0, Xi is obtuse. The results

implied by figure 1 are easy consequences. In particular_ we see for

example that any orbits in the regions I, 11, I"; If, If', If" have

_,_z > 0 while those in the regions III, III* have _,_z < 0. The sit-

uation in the strips is not as simple_ but is fairly clear.

Figure i.

1) The (two) solid dark lines through the points A and D are the

enveloping lines of solutions with _, = O. The corresponding lines

through B and C are the enveloping lines of solutions with _z = 0.

Any solution with _, = 0 or _z = 0 must lie in the corresponding strip

bounded by these lines.
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2) At P, the shaded wedge indicates the directions at P for which

the corresponding solution has _, < 0. At pz the shaded wedge indi-

cates a, k 0. Similarly at Q__ the wedge indicates az < 0, at QI

az > 0. On the dotted line AD the wedge has angle _ corresponding

to ¥z = 0. CB has a similar meaning with regard to the strip for o z.

3) The solid lines parallel to the strips indicate the regions where

the corresponding _i > 0 for all possible angles. The dotted lines

similarly indicate where ai < 0.

4) Thus we can see that in regions I, 1I, I", both of a,, a z are

positive, while in the regions II, II*, If", _, and a z are negative.

Finally in regions Ill, _, > 0; _z < 0 while in IIP, _, < 0; _z > 0.

5) In the strips we must determine the sign of a from the direc-

tion of the velocity vector: e.g., at P, any solution whose velocity

vector lies in the shaded wedge has _z > 0, _I < O, etc.

Thus we have a geometric criterion for determining whether or not a

solution will make a transit of the equilibrium region. Note in particu-

lar that such a solution must stay inside one or the other of the strips

away from the equilibrium, and that as it crosses the equilibrium region

it changes strips. Solutions going from right to left are "on the bottom";

those from left to right on top.

We conclude with a remark which may have some "engineering"
value:

Statement 11. The (two) solutions for which t_ I = 0 are hyperbolas;

these solutions correspond to those orbits which cross the region of the

equilibrium point the fastest.

(Corresponding solutions for the restricted problem exist and are

well approximated by these -- in the equilibrium region -- for energies

slightly larger than that of the equilibrium. )

The equation for these orbits are

-a X I ---VT Z z

-bTX z = VZ I
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or

z 2hv z {l:rrz + v z)-lb-1

2hv z

ez b

Proof: 'Statement 8 plus some algebra.

(Note that the left hand side is determined from geometrical con-

siderations alone, while the right hand side follows by letting xl " 0
and using the energy equation. )

This completes the present collection of statements.

le

2.
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INTRODUCTION

To date, no closed form solution of the equations representing

minimum fuel flight of a high thrust vehicle operating in a vacuum

under an inverse square gravitational attraction has been determined.

Optimum trajectories, under these conditions, must therefore be

calculated by numerical methods and iteration techniques.

On the other hand, the powerful methods of classical (or varia-

tional) mechanics hold promise of solving "all" dynamical problems.

The "only" difficulty being the establishment of a Hamiltonian function

in a separable form. The solution of "all" dynamical problems using

these methods will therefore not be imminent pending the development

of a general transformation procedure that will transform the Hamil-

tonian of any given problem into a separable form.

This paper presents a brief discussion of the classical procedures,

discusses both closed form and several approximate solution procedures

and shows the level of application to the minimum fuel trajectory problem.
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THE PROBLEM

The physical problem will be taken to be the determination of

trajectories for minimum fuel consumption for vehicle flight in a

vacuum under the influence of a high level, constant thrust and an

inverse square gravity field. This of course is not the most general

problem which could indlude variable thrust levels, higher order

gravitational attractions, atmospheric loads and disturbances, and

numerous other variables. However, it is general enough to des-

cribe most of the solution difficulties inherent in this type of problem.

The two dimensional equations of motion of a point mass vehicle

subjected to the forces described above may be expressed in cartesian

coordinates as

•_ F- sinX -'--y--x
m r

"" F tl

y - cosX ---T--y
m r

(i)

where x and y are horizontal and vertical coordinates respectively,

is the gravitational constant, F is the constant thrust, m is the vehicle

mass, X is the angle of thrust direction measured from the vertical

and r is the radius or distance of the vehicle from the center of at-

traction (r = Ix z + yZ] 1/z ). Specifying now that the mass flow rh shall

269



be maintained at a constant rate K, and introducing new variables as:

ql = x, qz = Y, q3 = x, q4 = y, q5 = m

The equations of motion in first order form become

F
sin X --_q_

q5 r
ql

qz F= -- cos X -='_ q4
q5 r

q3 = ql

c14 =

(z)

(3)

q2

-K

It is noted, that due to the constancy restriction on the mass flow,

a minimum fuel trajectory is now analogous to a minimum time trajec:

tory. The problem now is to determine the control variable Xsuch as

to insure that any trajectory obtained through an integration of equations

(3) will be a minimum time" (fuel) trajectory. It is therefore necessary

to apply some analytical optimization technique. Both the Calculus of

Variations and Pontryagin's Maximum Principle are usable here and

yield identical results. However, since it will be necessary to have a

Hamiltonian available for later applications, the Pontryagin technique

(Reference 1) will be used:

Defining the auxiliary variables as Pi (i=l .... 5), the Pontryagin

Hamiltonian function becomes
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F

H(Pi' qi' )_ - q5 (Pl sin X + Pz cos )_ -r-_ (p* q3 + Pz q4)

+ P3q* + P4qz - P5 K (4)

The condition that this function maintain a maximum is then

8H F
--= 0 =- (Pl cos X-Pz sin)_
OX qs

(5)

from which

Tan X = pl /Pz

Hence

sin X =

pi Pz

; = z )x/z(pZ + pZ fl/z cos X (Plz + Pz
(6)

Substitution of equation (6) in (4) then yields

H(Pi 'qi) F pZ- qs (pZ + )l_ -r-_ (p q
1 Z 1 3

q ) + p q +p,q =p+Pz 4 3 I z s
K

(7)

The equations may then be expressed:

qi = 8H/aPi ; Pi = - aH/aqi (8)

(i = i,---5)

The problem of obtaining the optimum trajectory now becomes the

problem of integrating equations (8).
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APPROACH

The approach used to study solutions of equations 6 is the

Hamilton-Jacobi theory of canonical transformations. This theory

was developed for basic dynamical systems, however it is applicable

to any system whose governing equations may be expressed in first

order form as

qi = 8F/aPi ; Pi =-8F/aqi (i = l---n) (9)

Where the function F(qi, Pi ) is not restricted to the Hamiltonian of

classical mechanics, but can be any function which allows presenta-

tion in the above canonical form. It is, however, usually referred to

as the Hamiltonian function or simply the Hamiltonian.

Now, examining the equations (9), it is seen that if one of the

qi(or pi ) is not present in the Hamiltonian (i.e. if a variable is cyclic

or ignorable) then the partial derivative of F with respect to that vari-

able is zero and the corresponding Pi(or qi ) is constant. Consequently,

if the system can be transformed to a new system of coordinates, while

maintaining the canonical form, such that all of the new coordinates and

their conjugates except one is cyclic, then the problem is solved. The

most direct way to do this is to set the Hamiltonian itself equal to the

one non cyclic new coordinate.

F'(P i,Qi ) = Q,
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which gives

QI = 0 PI = - 1

6i.= 0 P. =0
1

(i = Z.... n)

Hence all Q. = constant = _. and all P-constant = _. except
1 1 i 1

PI = ([51--t).

(i0)

It is however necessary to determine the canonical coordinate

transformation required to transform

F(qi'Pi )_F' (Q"P')xi = QI (ii)

To do this, it is necessary to introduce a generating function ':",

S(qi, P.)a function of one set of old variables and one set of new
1

variables. The transformation equations may then be written

= 8S/Sqi " Qi = aS/OP.l (i = I ...n) (iZ)Pi

S(qi'P')'l however must still be determined• This may be done

(theoretically at least) by substituting the applicable transformation

equation

Pi = OS/Oqi

into the old Hamiltonian and setting it equal to the new Hamiltonian

(13)
F(qi, SS/_qi ) = Q,

'.'q'here will be no discussion here as to the basic differences between

Hamilton's Principle function W and Jacobi's function S. Also S may

take any of the four forms S(qi, P.), S(q.,Q.), S(Q.,p.) or S(p.,P.) as
needed in a particular problem 1A . 1 1. . 1. 1 x 1• aiscusslon ol these areas appears

in Reference Z.
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S(qi, P.) is then determined through the solution of the partial1

differential equation (1 3) which is usually referred to as the

Hamilton-Jacobi equation. With S(q i, P.i ) known, the necessary

• transform relations may be obtained from equations (12).

Pj = Pj(Qi' P')I

qj = qj(Qi' P')

j(l---n) (14)

One further item, the canonical perturbation technique, might

be mentioned before concluding this discussion of the procedure used.

Often, it is possible to divide the Hamiltonian into the sum of two

parts one of which may be considered as a perturbation. The equations

then appear as

8F 8F -SF 8F
0 I 0 I

qi = - -- ; Pi - + --
8P i 8P i 8q i 8q i

(15)

where F = F -F
o l

The procedure then is to neglect the FI portion and solve the equations

8F 8F
o o

= 8p i = _ 8q..I

(16)

using a generating function S(c_P) and the Hamilton-Jacobi relations

to obtain
t

qj = qj(Oi' p')_ ; Pj = Pj(Oi' P')_ 117)

These solutions (17) to the first part of the problem ar_ then sub-

stituted into the original F = F - F and into the original equations (15).
o I
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Then, after several straightforward, but lengthy, manipulations

{See References 3 and 4), the following equations in the new vari-

ables result.

_F (P.,Q.) -_F (P.,Q.)
Q. = 1 1 1i 8P ; p. = , I I• * 8 Q. (18)

1 1

Hopefully then, l_'l (Pi' Qi ) is in a simple form such that the Hamilton-

3acobi equation for this part of the problem may be solved either com-

pletely or approximately.

The net result of these procedures, whether the direct approach

or a perturbation technique is used, is that the problem of integrating

the original equations of motion, equations (9), has been "reduced" to

the problem of finding a solution of the Hamilton-Jacobi equation,

equation (13).
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SOLUTION OF HAMILTON-JACOBI EQUATIONS

Two methods which give closed form solutions to some Hamilton-

Jacobi equations are the method of separation of variables (Reference

Z) and a closely related though imore orderly method known as Jacobi's

Method (Reference 5). The method of separation of variables is pro-

bably the easiest method of solving the Hamilton-Jacobi equation when

it is applicable. However, in application the method is not well organ-

ized and is quite dependent upon the skill of the operator to "see" the

separation. Also, the question of whether or not the equation is

separable depends upon the coordinates employed. The restricted two

body problem is separable in polar (or spherical) coordinates, but not

in cartesian, and the coordinates for which the famous three body pro-

blem is separable have evaded investigators for years.

Some insight into whether or not the H-J equation is separable in

a particular system of coordinates may be gained through the develop-

ment of a separation criteria.

The real question of separability is the question of whether function._

of the form

Pi = Pi (qi' _ '---' _ ) (19)I n

can be found so that when substituted in

H (ql,qz , ---,qn, Pl,Pz ,---Pn ) = E (Z0)

will cancel out all the qi's is to be answered.
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Our purpose is to find the condition that the Hamiltonian be

separable with respect to a set of coordinates. If this condition

is not satisfied in one set of coordinates, then one needs to find the

proper coordinates which satisfy the condition.

Now let us assume that we can find Pi as in (19) which satisfies

(20). It follows that Pi and its derivative with respect to qi are func-

tions of a single coordinate qi" Differentiate (20) with respect to qi'

we obtain:

_H aH api
m + - 0 (21)
aq i aP i

Let us introduce a new function Pi of the form:

Pi = f (q* ' qz ---, qn; p* ,Pz , Pn ) (22)

such that it will satisfy the relation:

aH " 8H

---- Pi = 0 (Z3)
8q i 8P i

By comparing (19) and (21) we obtain:

aPi
Pi = (23a)

3q i

and thus Pi is a function of qi alone, since Pi is a function of qi

alone by (19); By differentiating (23) with respect to qj,

in mind relation (22), we obtain

a:pi a Pi OP
÷ i = 0 for j # i (23b)

aqj aP. J aqj

and keeping
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From (Z3a) and (23b), we obtain:

8Pi _Pi

8qj 0P.j Oj = 0

Differentiating equation (23) with respect to qj,

obtain:

and using (Z3a), we

8qiaqj . . kSPlacij _-P_Pj Pj Pi - -_i_Sqj ]

(Z3c)

ap i
Using (ZI) and - 0, we obtain:

aqj

By simplification

a z H 8H 8H 8 zH 8H 8H 8 zH aH 8H 8 z H _H 8H

8qiSqj 8P 8P. 8P. 8Piaqj 8"P._ 8P.SP.i J 8qiOPj aqj _ aqi J _ J aqi aqj

(Z4)

for i,j = 1,Z, - - -,nandi# j

-0

Therefore, the necessary condit.ion that (20) be separable is condition (24).

It can be easily shown that the validity of equation (24) is also sufficient

for the integration through separation of variables.

One interesting case of separability is the case where the motion is

known to be periodic. In this case, the proper coordinates are the action

and the angle variables, and the,H-j equation is separable.

If the H-j equation is separable in more than one set of coordinates,

then this case is said to be degenerate. There is similarity between
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4

this degeneracy and the general one. Consider the general equation:

OX:Q X
o

where Q is an operator, Q is a constant, and X is the characteristic
o

function. It is clear that for each value of Q0 there corresponds one

or more X. In case there is only one X, then Q is said to be non-

degenerate, otherwise it is called degenerate.

The similarity of the H-j equation with the general case above can

be visualized by taking the Hamiltonian, H, as the operator, Q, the

constant,a, as Qo and the generating function, S as X. If we define the

8
Hamiltonian operator: S = H (ai' Xi' -_-_-)

1

as having the property

H (a., X. 8 .,___)i i, -_-_-- ) S = H (a.,X 8S.
• 1 1 0 .:
1 1

H (a.,X.) S = S
1 1

then our H-j equation will take the form:

HS = aS

Thus H is degenerate or non-degenerate according to the number of

solutions of S if it is one or more. This is equivalent to saying that the

equation is separable in one set of coordinates or more.

As mentioned before, "Jacobi's" method for obtaining solutions

to first order partial differential equations appears more orderly
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than the separation techniques. Since this method does not appear

to frequent the literature as much as the separation procedures, a

brief development is presented here.

The solution of the H-j equation involves the determination of

the generating function, S. The Hamilton-Jacobi equation may be

written in the form

F(qi,qz ' - - -' qn 'PI'P'z - - Pn ) = 0
(Z5)

where

aS
F = H-_ ; P. = _ and H is the Hamiltonian.

1 8qi

Second, we try to find (n-l) compatible functions to F,i.e. (n-l)

additional functions F.'s, which satisfy (g5), i.e.,
1

F.(q ,q , - -'qn ' P P " - -P ) = c_. (i = 1, 2, ---n-l)
1 1 2. 1 2 n 1

where the _. are arbitrary constants. Third, the P ,P , -P
1 " 1 Z n

(26)

can

be determined from (25) and (26) as functions of q's and _'s and such

that these functions, when inserted in the differential relation

dS .= P dq + P dq + (27)
i 1 a z - - -Pndqn

yield an integrable equation. The result of integrating (27) whereby

an arbitrary constant a is introduced, is our generating function.
n

Since the proof is too long and complicated in the general case,

let us show the procedure for: n = 3.

F (q ,q ,q ,P ,P ,P ) = 0 (28)
1 Z 3 1 Z 3
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Let us find two particular integrals of (Z8) as follows:

F (q ,q ,q ,P ,P ,P ) :
1 1 Z 3 1 Z 3 1

(Z9)

F (q,,q ,q ,P ,P ,P ) = azZ Z 3 I Z 3

where P ,P ,P are functions of q ,q ,q .
I Z 3 I Z 3

Since F ,F are integrals, the "Poisson brackets"
I z

(30)

(31)

and

(32)

Moreover, FI and Fz must be compatible, hence

FI ,Fz] --0

Now solve (Z8), (Z9), and (30) for P ,P
I z

dS = P dq + P dq + P dq3
1 I Z Z 3

which is required to be integrable.

, P and form
3

(33)

(34)

In order to find the relations between the F.'s and P.'s which
! !

satisfy the above conditions, we expand (31) inthe usual form:

8F 8F, + 8___F 8F___!+ 8__F 8F, 8F 8FI 8F 8F1 8F 8F1

8qi 8PI 8q 8P 8P3--8PI -8-P 8q 8PZ Z 8q3 8ql Z Z 3 8q3

=0

This is a homogeneous linear partial (differential equation) for de-

termining FI. Its subsidiary equations are

dP1 _ dPz _ dP___./__3= dql = dqz = dq3
or or or aF aF OF

8qi q_z 8q 8PI 8Pz 8P3
3

(35)
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These relations also serve as subsidiary equation to (32) for the

determination of Fz_ Therefore, if one finds from (35) two in-

dependent integrals F, = al and Fz, = .az , then all the relations

(31) ; (32) and (33) will be fulfilled, and our task is accomplished.

The procedure for the general case is exactly the same.

If given the partial differential equation

F(q,,qz,---qn; PI Pz,-- -P ) = 0' n

then, form the subsidiary equations

dP, dP£_ = _ _ -=dP n =d__.dq/__= dqz = _ dqn
8F 8F 8F 8F 8F ___

8ql 8q _-qn 8Pl 8Pz 8IDz n

and find (n-l) independent integrals

f. --- _.

1 1

i = I, Z - - ,n-I

such that

_i' Fj] = 0
i,j = 1,2, - - -n-1 i#j

Then solve the n equations

F = 0 and F. = a. i = 1,Z, - - -,n-1
1 1

for the P's in terms of q's and a's, and insert their expressions in

dS = P, dql + Pz dqz + - - -+ Pndqn

Integration of this equation leads to a complete integral of S.
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APPLICATION TO THE PROBLEM

Canonical perturbation techniques (using Jacobi's method to

solve the Hamilton-Jacobi equation) may be applied to the problem

of equations (6), To illustrate, consider equations (6)

8H

qi =- ; Pi ='_H/aqi (i = I,---5)
8p i

with H given by equation (5) as

(6)

F_ z + pZ + + _psK _H - Px P3 qi P4 qz
z

define

GM

r--t-(P,q3+Pz q4) (5)

H - F /DIz + pZ + P3q* + P4qz - Ps K
o q5 V"

(36a)

and

GM
HI = 7 (p-q3 + Pz q4) • (365)

The equations are then expressed

qi- 8H° _ _SH* ; =_i - -8H° + 8H,
8P i 8P i 8q i 8q i

(i=l--- 5) (37)

ZERO GRAVITY APPROXIMATION

Consider first the problem

8H 8H
o o

=--; _i = - -
qi 8pi 8qi

(38)

The Hamilton - Jacobi equation for this problem is

F "_pZ , + Pzz + P3q* + P4qz - P5 K - Ps = 0 (39)

283



Where P is the'introduced constant. The subsidiary equations
5

(analogous to equations 35) of Jacobi's method are then

dp3 d_m dps= -- =
0

0 . /D +- F -Z

qTV'l

dql _ dqz _ dci% = dq4

-E p, - F/pzp; -q, -qzqs_/P" + Pa " qs +pZ
1 2 2

(4O)

The third and fourth conditions give

P3 = P3 = const. (41)

P4 = P4 = const. (4Z)

as expected since P3 and P4 are cyclic inH
O"

From the first and last of equations (40):

P3
dpl = _ aq5

P3
p, = -_ qs + P, (43)

From the second and last of equations (40)

P4
dpz - K dq5

P4
Pz = -_ q5 + Pz (44)

Then, substituting equations (41), (4Z),(43), and (44)into equation

(39), p_

Ps

becomes

F [ P3 )z P4- q5 K (-_qs + P, + (_--q5
L

+ P--/q, + 1'4K W - K

+ Pz )z]
*/z

(45)
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The equation.for obtaining the generating function (analogous to

equation 34) is

dS = pl dq, + Pz dqa + p3dq3+ P4 dq4 + P5 dq5

Substitution for the Pi and integrating gives:

P3 P4
S = (--_q5 + P*)q* + (-_-q5 + Pz )qz

F _ P_P3 + Pz P4 j_n A _/pZ

+ _. C+ z z
3 +P4

Z

A =

P5
+ P3q3 + P4q4 - _ q5

+ pz _n B_ (46)

3

2
B = --

q._

The transform

p.

+ P1)Z + _q5 + Pz )2 (47a)

[P3 z + P4z C + (pZ + pZ ) _K + (P* P3+Pz P4_] (47b)

z + pZ C + (P_ + pZ ) + (p, p3 + Pz P4) (47c)

relations are then obtained from

Q. -_-

1

t

ql =

qz

as
P3 Px

F ((PI -P3Q_) + J_n A - _n B
QI "K t. C %/pZ + pZ _/pZ + pZ

2(P,P,+P&P4) [_-P_ + PJ'(PI-P3Qs) + p3]+ AKCP_ + P_ C "

Z_P_+P_ [ P_C _P_ +P_ (PI-P3Q_) + ZPI-P3Q,_48)

+ BK Q5 '[_p_ +pZ + C

: c P)p 

+

Pz fn

fn A-¢--'z+Viii pz

Z(Pz P3+P_P_) [ _ + pZ (Pz - P4Q5 )

AK_/P_ +P_ [ C

2_P_ + Pzz [_/Pt + P_ (P2 -P4Q_) + P_ C

BK Q5 [ C - _P} +P_
+

B

+ P4] (49)

+ ZPz -P4Qs]}
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q3

q4

= Q3 + Q, Q5

+
BK

- K [ AK_/P_ + P_ Pl'PsOs + p3c ]Jp_ + p;

+ Ps Qs

In A

(50)

_ F _'-2(PIP_+PzP4)[_ +P_ P4C]: o, + ch c/s K LAK,CP_ P,_-P4Os _¢p]+p_

+ Z_fl_IBK + P_" P4Os + --f 151)

qs = - KQ 5 (52)

CONSTANT GRAVITY - FLAT EARTH

It is now desired to perturb this zero gravity solution into a

solution to the constant gravity flat earth problem. The equations are

then

where

_._ all' 1:3. _ -all' (53)
aP. _ oQ.

i 1

H' = Ps - g (Pz -P4Qs ) (54)

Specifying a determining function W = W (Qi,k.), 1

Jacobi equation becomes

the Hamilton-
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aW 8W 8W
- k5 = 0

Assuming a solution for W as

W = WI(Q_) +Wz (Qz)+W3 (Q3)+ W4(Q_)+ Ws (Qs)

The Hamilton-Jacobi equation becomes

+ gQ5 8W___4_ 8W____z- k5 =
8Q5 8Q4 g 8Qz "

Since the coordinates Q1, Qz , Q3 and Q4 , are cyclic, P1 , Pz , P3

and P4 are constants

P1 = kl ; Pz = kz P3 = k3 P4 = k4

Hence equation (57) becomes

_W + g M Q5 -(gkz + ks) = 0
aQs

which integrates to give

1

ws = - _gX_ Q# + (g×z + ×5)Qs

W1 through W4 are determined from equations (58) in the form

W. = k.Q. (j = 1,2,3,4)
J J J

Then, W becomes

W = MQI + Xz Oz + k3Q3 + MQ4 + (gkz + ks)Q5 _ MQs z

The coordinates are then obtained from

x. = _w/a×. (i = 1 - - -5)
1 1

which gives

(55)

(56)

(57)

(58)

(59)

(60)

(61)

(62)
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Xl = QI

XZ = Qz + gQs

X3 = _3

x4 = Q4 - g/2C_

x5 = Q5

and from equation (53)

k5 = P5 + gP4Q5 -gPz

and the new Hamiltonian becomes

H= k5

with the equations

_.. = aH/_×.
1 1

which gives

x. = b. = const
i i

k. = c. = const
i I

x5 = t+ b5

Then from 63! 64_65 and 58

Ql = bl

Qz = bz - g(bs + t)

Q3 = b3

Q4 = b4 - _Z (b5 +t) z

Q5 = (b5 + t)

; i. =-SHlSx.
i i

PI = Cl

PZ = cz

P3 = c3

P4 = C4

P5 = c5 + gc2 - g c4 (b5 +t)
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Then from equations 43, 44, 52, and 66

pl = Cl

P2 = Cz

Such that the guidance angle expression becomes

(kl +t )
X = k o "kz +t"

Tan

where

k o = c3/c4 ; kl = b5 -ci/c3 ; kz = b5 - Cz /c4

and tan X is a bilinear function of time as expected.

FORMAT FOR INVERSE SQUARE GRAVITY PERTURBATION

Returning now to the zero gravity solution of equations 41,

4Z,43,44,45,48,49,50,51 and 5Z. Substitution into equation 36

yields the Hamiltonian for the inverse square perturbation term as

H* = P5

Q5

- qpf +

(67)

- r-_ (PI - P3Q5) (Q3 - Q*Q5 ) + (Pz - P4Q5 )(Q4+Qz Q5 )

v/(P,-P3Q5 )Z+(Pz-P4Qs)z (P'P3+PzP4 5)p_ + pZ Q (68)
%

(P, P4-Pz P3) "
p_ + p_ - (P_ + P_)Qs z + (PIP3+Pz P4)Q ./

(P_+P_
(P*P3+Pz P_)Qs ) fn B]I
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Where A and B are defined in equations 47.

The accompanying equations of motion are then

Q. = 8H*ISP. 15. = -SH_/SQ. (69)
1 1 • 1 1

The presence of the numerous radicals and logarithmic terms make

the attainment 6f a solution of the accompanying Hamilton-Jacobi

equation quite improbable by ordinary means. Thus, the use of this

perturbation method and the Hamilton-Jacobi technique displays little

overall advantage in obtaining a closed form solution to the general

problem.

AN APPROXIMATE SOLUTION - INVERSE SQUARE GRAVITY

The difficulty of obtaining a closed form solution leads to the devel-

opment of an approximate solution which is taken as a first order im-

provement on the constant gravity-flat earth solution. Taking the

complete Hamiltonian of equation 5, the Hamilton-Jacobi equation may

be written

_F GM
_p,Z + pZ + P3q* + P4qz - P5 K - --3--

q5 r

whe re

(_* q3 +PZ q_ ) - P5

Pi = 8S/0qi

The subs'idiary equations of Jacobi's method are then

= 0 (76)
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d___._= dpz= dp3

P3 p4 GM .
-r-_--[px 3--81(p, q3 +pz q. )1

rz

dp4

GM q4 )]r-_- [p z 34-_- (p* q3+Pz

dpp dql

F z = _ GMq3
"_ _ +P" - ; --Pr

q_JP_+p_

dqz

F pz

q_Jp_+p_-
r3

d q3 = dq4 = dqs (71)
-q, -qz K

By comparing the above equations with the subsidiary equations of the

flat earth problem it is seen that the primary differences are in the

denominators of the dp3 and dp4 terms and there is an additional term

in the dql and dqz denominators. Therefore, let the change in the P3 and

P4 terms be of order • m over the constant result of the flat earth pro-

blem.

P3 = P3 + 2•1 qs

P4 = P4 + Ze z qs

(7Z)

where e I and • z are unknown small constants. Substitution into the

subsidiary equations then gives: from first and last equation

dp, dqs

P3+Z• t qs K

1

px = P* + _ (P3qs + elq_ ) (73)

291



similarly from Second and last equation

dpz dfl.

P4 +2_ z q5 K

1
pz = Pz + _ (P4 q5 + "z q5 z) (74)

Substitution of 7Z, 73 and 74 into 70 and solving for P5 gives

Ps = _ (P* +_ (P3qs + _*q_ )) + (Pz + _(P4qs +_z qZ )
z] 1/2 F
J

+ (P3 + 2_,q5 ) ql + (P4 + 2_z q5 )qz (75)

- r-y-[I _ (P3qs+_lq_)}q3 +(Pz+_(PzcB+_zq_)) q ,

°Ps}
Now, since P3 and P4 were approximated it should not be expected that

the p's will make the function

dS = p, dq, + P2 dqz + p3dq3 + p4dq4 + Ps dqs (76)

an exact differential. Therefore further adjustm0nt must be made

in Ps to make dS exact. Hence, assume

Ps = (p_ + pz) + K (P3P* + P4Pz)qs +2z

x/z
(pZ + pZ + 2K_IP1 + ZK_z Pz ) qZ (77)

I I 1 ]

+ _ (P3+2_ xqs )ql + _ (P4 + 2_ 2 q5 )q2 + 2_ 1q3 +z_ z q4 -_P
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Substitution _)f equations 7Z, 73,

integrating then gives

74 and 77 into equation (76) and

S ___

+

1 1
R (P3 qs + elqZ)ql + Plql + R (P4q5 +_z qZ)qz + Pz qz

P5

(2_, qs + P3 )q3 + (2_ z qs + P4 ) q4 - -_ q5

F IC , +R

- ,_

where C' =_Pi

P3P1 + Pz P4

Vf-_z + pz+zK_ip,+ZK_z Pz

+P))+

+

2 2

= _ (P, P3+Pz P4) + _z

+ 2q pZ + pZ C'

_n A'

_n B'>

Z
(P3PI + P4Pz) qs +2z

7

+ 2K_I P1 + 2K_z Pz) q_

(P§+P_ + ZKeIPI + ZK_z Pz)q5

2 2
2 (pZ + pZ) ÷ _ (Pz PI+Pz P4) +-
qs Kq5

C !

A 1

B !

Z+pZ +2K_lPI + 2K_z PZ

The new coordinates Qi are then obtained from

(78)

(79)

Q. = 8S/8P.
1 1

which may be solved to yield the original coordinates in terms of the

new as

ql = Ol - g1(Os)

qz = Qz - gz (Qs)

q3 = Q3 + Q5 [O*

Q4 + Qs [Ozq4

q5 = -KQ5

- g_(Qs)_- f_L(Qs)
. _ k fz ,,_

gz (05)] - "F- )

(80)
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Where

where

gl (05)

g2 (Qs)

f_ (Os)

fz (Qs)

G=_ C

= 8G/8P1

= 0G/SPz

= 0G/0P3

= 0G/0P4

PI P3 +Pz P4

'(Q5 ) +_1_3+1_4+ZK e 1 PI +ZKc z Pz fn A'(O5 )-fP_ +PZz_nB' i

Finally, the guidance function is obtained as

P*-PaQs + _*KQ_ (817

TanX = Pz -P4Q_ + cz KQs z"

A bi-quadratic form which becomes in terms of time by replacing Qs

by its solution
M

o

Q5 = t+_ = t- K

Then

clKt z - (ZMo_l+P3)t + (el+P3) Mot Pl

Tan X = _ (81a)

ezKt z - (ZMoC z +P4)t + (ez +P4)--MK--+ Pz

which is an expression containing two unknown constants which may

be used to'Iit" known solutions for guidance purposes.

294



CONCLUSION

The application of the Hamilton-Jacobi theory of Classical Mechanics

was useful in obtaining solutions to both the zero gravity and the flat earth-

constant gravity rocket flight problems. "These solutions then led to a first

order approximate solution of the inverse square gravitational attraction pro-

blem. However, the theory did not prove useful in obtaining a closed form

solution to the inverse square problem.

The development of a closed form solution by these methods depends

on the proper choice of coordinates to insure that the Hamilton-Jacobi equation

is seperable or solvable. Consequently, it appears that the usefulness of these

methods in high thrust applications will be limited until the development of

a transformation procedure which will transform the system from the well

known cartesian or polar coordinates to a system of coordinates for which a

solution of the Hamilton-Jacobi equation is guaranteed.
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/
/

' SUMMARY
, •

This paper utilizes the similarity of the minimum fuel trajectory

equations to those representing a restricted three-body problem to gain

a canonical formulation in the variables of Delaunay. A two step trans-

form procedure .carried to the first order in small parameters is then

presented as an indication of a rr_ethod that may be followed in higher

order studies. This progress report presents the analytical develop-

ment of the procedure as completed through December, 1964.
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INT RODUCT ION

The minimum fuel equations of motion are synthesized from a

generlized Hamiltonian using Pontryagin's method. These equations are,

of course, identical to those presented in Reference 1 which are developed

through calculus of variations procedures. Examination of the multiplier

equations reveals that they may conceptually be considered as represent-

ing the motion of another (fictitiou_ body relative to the vehicle. A trans-

formation of the coordinates then yields equations relative to a common center

with the vehicle position coordinates.

These equations are then in a form quite similar to equations represent-

ing a three body problem in cartesian coordinates. Hence, they are easily

transformed into perturbation equations in elliptic coordinates and thereby

into canonical equations in a set of' variables representative of those used by

De!aunay in his lunar studies.

The disturbing functions of both sets of equations are not identical.

However, the disturbing function of one set may be separated into two parts,

one part of which is identical to the disturbing function of the other set. Two

basic transforms may then be performed which shift the periodic terms into

terms whose coefficients contain higher orders of small parameters. The

method used by Delaunay is not applied directly. Instead, a procedure, simi-

lar to that attributed by Poincare to Bohlin, which makes use of a determining

function to obtain the solution to the desired order is utilized.
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The complexity of the problem and the magnitude of the task of

expanding the forcing functions and obtaining the transformed relations

precludes a blind approach to a higher order solution. Hence, a first

order solution, as presented here, will be employed in an effort to gain

insight into the order of solution required to achieve the accuracy required

in space flight trajectory calculations.
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THE EQUATIONS

The two dimensional equations of motion of a constant thrust vehicle

in an inverse square gravitational field may be expressed in first order

form as

Tkt

k4 = - _-_ x, + -- cos×
r m

T
x5 = - _-_ xz + :-- s inX

r m

xl = x4 (1)

XZ = X5

r_n = _

A generalized Hamiltonian function may be formulated from equations

(I) as

H = Mx4+kz xs -r _ (Mxl+k5 xz)+ T (k4 cos X + ks sinx)
m

- k7 _ where r z = x z + x_

to obtain the optimum thrust direction requires that

aH
-- = 0 = - k4 sin X + ks cos X
a×

tan X = ks/ k4

From which

where

sin X = _ • cos X = kl
P

P P

Substituting these values for sin X and cosx, H becomes

H = kl x4 + kz x5 - _ (Mx, + Xsxz)+ fx-7 P "
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T T
whe re - = T/MQ

m M -_,t ---_- t
o 1 Mo

and x_ = 1 - _ t = 1 + oft
M

o

T/M = f
o

T f/x7 -k7 M k7
m o

The equations which must be solved to obtain minimum fuel trajectories

become

8H f k4/__, = -_4 = - x, +
r _ x7 p

xs = 8H/sks = - r}_ xz + f---(ks /p)
X7

• 8H
x, = /Ok, = x_

xz = OH/Skz = xs

x7 = 8H/sk7 = a

k4 = 8H/Ox4 = - kt

(z)

)[5 = aH/ax5 = - kz

)[1 OH/ax, r_ 3 xl= - = X4 -_ (Mx, + ks xz)

kz = - 8H/Dxz = r_ ks - _ (k. xl + ks xz )

• f p
k_ = - 8H/Sx_ =--_

x?

Now, returning to the expressions for sinx and cos ×, and referring to Figure

1, it may be seen that the thrust direction may be considered as the direction

to some fictitious body a distance p from the vehicle, k4 and ks may then be

considered as the coordinates parallel to xl and Xz of the fictitious body rela-

tive to the vehicle. To obtain equations, analogous to three body equations , the

k equations must be transformed to equations relative to the same center of

attraction as the vehicle• This may be accomplished by introducing
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_4 = xl + k4

(3)

such that pis now

p = _4_-xl )2 + (_s - xz )_ 1/2

or upon defining

42 --41 + 4:

p becomes

p -- _ - Zlx, 4, +x,_*_)+ r_ 1/_

The equations of motion (2) are then transformed to the following second

order equations

oa

Xl 9 - f (qJ_-xl)+
x7 p

+ _- f (45 -x2)
r x7 p

Io
f

44- (44-xl)--_-_ +
xvp r

ee

4_ =J_- 145-x_)-_ +
x7 p r

3 Xl

Examining the right hand sides of these equations

f
RI =--- p

x7 z
f _t 4

Rz - P --- - F 2r-_ -x7 _,

The equations of interest become

xl ORl /"_'_ + _-r = Ox, _'_
r

xz ORl/ Oxz "h55
"_z + _ 7 =

and defining

_" xl _b4 + xz _5-_
3r-_ (x144 + x,.qJ_ )i2.- 2r _ ._J

(4)

These equations are then identical in form to equations representing ares-

tricted three body problem and may be transformed by any of several standard

methods available into canonical equations in the Delaunay variables,
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L = aFv/alv _ = - aFv/aL
v v v

(_ = aF lag v gv aF laGV V V V

_ = oF /ak k = - aFv/aK
v

L T = OF T/Of T

G T = 8FT/Sg T

IT : . 8FTIOL T

gT = " 8FT/aGT

where

r -_-
v ZL z aK + RL

zV

ZL-_T ± _K + RzF T =

and the substitution x7 = k, ¢ 7 = K has been incorporated to account for

the mass equation. The subscript v applies to parameters Which represent

the vehicle and the subscript T indicates parameters representing the thruster body,

z __i
Now upon adding - -R--z to F and -

, ZL T v

for R, and Rz and defining

Fz = - _ + _'Tr + r3-_"

F and F T may be expressedv
z z f

v

F T = - Fv + Fz

and the equations may be expressed

ZL z to F T, substituting the values
• V

3(x,¢4+xz45)-77 (xl¢4+xzCs)

= - aFu/aL v
L = 8Fvl Ia_v v v

gv = - aFv/aGv

k = - aFv/aK

G = aFv/ag v
v

t_ = aFv/ak

L T = - OFv/aJ_T + aFz /al T ; R"T = + OL/aLT -aFz /aLT

G T = - aFv/ag T + aFz /8gT;gT = + aFv/OL T - 8Fz /OL T

(5)
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THE DISTURBING FUNCTION EXPANSIONS

To obtain solutions of equations (5) by applying a Delaunay procedure,

it is necessary to express F and F z as series expansions in the Delaunay
V

variables L, G, _ and g and/or the closely related elliptic parameters,a

and e. These types of expansions are readily available in any of several

texts on Celestial Mechanics. The actual functions F and F z of interest
V

here are not identical with those found in the texts, however, the individual

•parameters in the functions are similar and the expansion procedures are

the same. Therefore, only the results of the expansions taken to the first

order in the eccentricity e will be presented here.

The expanded form for F is then
v

Z

F =
V

V

+ .065 L L
v T

•4) '/z- a K - (l 85 (L + E T

(L; + LT)-I/Z (Lv+Gv)(LT+GT)_'oS(,v+gv+R_,T_gT}

+ cos (_v+gv-k-_T-gT_

+'k

+ cos (_v+gv-Zk-_T-gT_
- 1/Z

+ .637 ev vL z LT (Lv4+LT) (LT+G T) cos (-gv+_T+gT)

+ ,08 eTLvL ¢ (Lv+Gv){L :+G:} -3/z I--_L4+v 7LT+LT3GT_C°S('v+gv-gT )

-.Z58 eTLT(L:+LT )-'/z L.._c°s (k+,T)+ cos (k-,T_

+ . 194 evLZv LT(LT+GT){L;+LT)-I/z }_°s(-gv+k+fT+g-£)+c°s(-gv-k+'T+gT_

)'#:+ eTLvLZ (Lv+Gv)(LT+L4T v 194 L4+v " 19L4T -'04L 3T

_s %+gv+kgT)+cos(%+gvk .T_
-1/Z

-.85 eTL;(L:+L, ;) cos_ T
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4)-l/z
-. 214 LvLT(Lv4+ L T

+ 52 (L _+ )'/z
• v LT4" cos k

+ .127 (L 4 + LT )llz cos 2kv

+ %057 {L 4 + LT4)llz cos 3k
v

+ . 063 (L 4+_LT4)I./z cos 4k
v

where cl = f/li

(Lv+Gv){LT+G T) cos (lv+gv-iT-gT)

Likewise, the expansion, to the first order in the eccentricities, of

Fz is

Fz

+e

+

+

+

9 " -z LTZ- 12--"8 e Lv v
2

ii-

whe re q =
v

= _ 6 _ _-_(Lv+Gv Lv L (LT+G T

v_g LTZ+_ Lv-'LTZ (LT+GT)z (Lv+Gv){3-Lv1{Lv+Gv)_COStv

eT LT z _:6._+__3 L -z 4- 64 v LT {Lv+Gv )z (LT+GT) (5LT-GT)_C°S IT

3 -z )z
6-_ Lv LTZ {Lv+Gv (Lv+GT)z cos {ZRv + 2gv-ZtT-2gT) "

3 +GT) ['_2-L -l{Lv+Gv)- _ cos {R +2gv-2_T-2g T)ev LLI L_'{Lv+Gv )(uTz L- v v

9 -z
-_" e T L v LT3{Lv+Gv )z {LT+G T) cos {_v+ggv-tT-ggT )

3 z z
6"-4 eTLv-Z LT (Lv+Gv) {LT+GT )z cos {_v+Zgv-MT-ZgT )

'='h

(L+Gv v)Z (LT+GT)Z cos (3Iv +2gv-2_T-ggT)_
J
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THE FIRST TRANSFORM

A previous section presented the canonical equations and the

expressions for the forcing functions in terms of the variables L ,
v

Gv '!v' gv'K'k for the vehicle and LT,GT,IT, g T for the thruster. To

aid in the bookkeeping in the transformations and to achieve a slight

realignment of the equations, the following notation is introduced.

L = LIO I = Ilo
v V

G = Lz° gv = lZOv

K = L3o k = !3o

L T = "L4o 1 T = 14o

G T =-Lso gT = 15o

also, let F = FI such that
v

F T = - F, + Fz

The equations of interest, equations 5, then become

L,0 = 8F,//)_10 110 =-SF,/aLl0

Lz0 = 8Fl/81z0 t,0 =-SFl/aLz0

L30 = 8Fi/%t3o t30 =-%Fi/SL30

L40 = 8F,/8_40- 140 = - 8F,/SL40

_Fz / _t4o

(5a)

+ ,gFz / _L4o

Lso = 8F,/Sfso-

8Fz /81s o

Is o = - aft/8L5 o + 8Fz /8L5 o

The equations for the first transform are obtained by neglecting

- 8F, (6)
the term Fz in the above expresslons. Ljo = 8El/8_Jo; _Jo = - 8Ljo

Then expressing (j = I,...5)

Fl = Flo + FI,
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where 9"10 is the part of F, that does not contain the small parameter

e 1 and may be seen from the function expansions to be

z z

FlO= 2L-_I ° -_ - a, L3o (7)

consists of all terms in FI which contain the smallpara-The term FII

meter _1 and may be expressed as

n

F,t = P + _" Q01 cos O01
0 i=l

(8)

where Po is the part of Fn that contains no periodic ,terms and may be

seen to be

Po = - (.85) e, (L,04 + L404) I/z

Q0i represents the coefficients of the periodic terms and as may again

be seen from the expression for F in the expansion section, the Q0t
v

are functions of the small parameter el and Ll0, Lz0, L40 and L s0 only.

The cos 8a are the periodic terms where the eOi are given by

or

{_i = Pt i_1o + Pzi_zo + P3iR3o + p4i_4o + P5 i_5o (9)

5

Ooi = _" pj i_j0 (9a)
j =I

and n is the number of periodic terms to be considered.

The procedure now is to transform the Hamiltonian of this part of

the problem, F1 , into a new Hamiltonian which is independent of the angle

variables such that

Fl (L,0, Lz0,

= FI _:' (LII ,

L30, L40, L50, J_lO, l_zo, _30,-Q40,_50 )

LZl , L31 , L4t , LSI)

(10)

where Lll , Lz *, etc., represent the transformed variables.
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To aid in the tx, ansformation, a determining function

S = S (Ljl ,_j0) (j = 1 ,z ..... s )

may be used following the procedures of the Hamilton-Jacobi theory.

The equations of transformation are then

Lj0 = 8S/Sij0

(J = l,z, .... s ) (11)

lJl = 0S/0Lja

and the terms of the Hamiltontan become

8S _S

F10 = F10 (8S/0110,0_30 ,0_40 )

8S 8S 8S 8S
Fl = Fll _ _ , _lo, _zo, _30, _40, lso)

(0Rl o' 0_z o' _4 o' 0_s 01

The determining function may be expanded in powers of the small para-

meter el, as

S = S0 + Sl + Sz +

where So does not contain _1, $1 is first order in _1, Sz is second order etc,

To insure an identity transformation in case all Q01 happen to be zero, S o

must be

So = Lll_lO+ L21_zo+ L31._30 + L41._40 + Lsllso (1Z)

or So = _Ljl_j0
J

The transformed Hamiltonian may also be expanded in powers of the small

parameter e 1 as

F1 _" = F10 * + Fll _:' + Flz * + ---

where F10 _ is of zero order in el, _-'11* is of first order, etc.

tuting the relations for

(1 3,)

Substi-

S and FI "", the Hamilton-Jacobi equation becomes
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upon substitution of equations 11, IZ, and 13 in 10

+-+...0_j o 01t o

floi_ = Flo _ + Fll* + (14)

(J = l,z ,-..,s )

F0 and FI may then be expanded in Taylor's series which to the first

order in Ez become

F 0 = F 0 (LJI) + 2_ 0F°| _0S1
+ ...)

aLJ L,sl

Fl - FI (Ljl, 0oi)
(J = l,Z ,''',5)

(:t = t,Z ,... ,n)

Substituting these series into the Hamilton-Jacobi equation and equating

terms of like order in el gives

2 2

' - _ _ aL31 (15a)Flo(Lj1) = Flo _c - z_Iz -

_.j _aFl°jLjl _lJo.aS1+ Pl + _'_licos0oii = Fll*(Ljl) (15b)

I _FI oThe notation 8F1------_°I denotes

8Ljo [Lj1
O_jo

denote the functions P0 and Q0i with the LjI

evaluated at Ljo = LjI, PI and QIi

substituted for the L j o. Now,

since Flz* is a function of the LjI only and since Sl and 2; QI i cos00t are
l

functions of the_j, Ftl* can only be related to the term Pl. Hence,

FII # (LJl) = PI = - (.85) E{ (Lii 4 ÷ L414) l/z (16)

and

_. OFl.._____oI OS1 _ _" QI t cos 0oi (17)

j 8LjOJLjI 81jo i

Returning to the expressica for Fl0, equation(7 ), and introducing the

notation
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Z Z Z

_1 0 = , 1J4 0 = =

4O

The required derivatives may be evaluated as

= - U1 0

DLx 0 Lx x LI I Lx 1

Lz l

L3 x

= 0 "

= -Or = - 1331

=-vii

(i8)

= = - U4, = " _41L40 L41 L40 L41 L41

8F___AIq I

8Ls o]

or.in general

Ls I
= 0

8Fi o

8 L j0
Ljx

"j,

The equation for Sx, equation {17), then becomes

0 Sx 0Sx DSx n
+ _ -- + u4x - _" Qxt cos Ooi

vxx 0_1o 8_3o 8_4o i=1

or

_.u 8Sx = 2;Qli.cos Oot
j jx /OLjo i

A solution for this equation may be taken in the form

Sx = _. Axi sin O0i
i

where the Atl are not functions of any lJOo Hence,

0S1 _ OD_0 AIr cos Ooi8_lo t

(19)

(19a)

(zo)

311



The particles of Ooi required are obtained from the expression for 00i,

equation (9), as

O0 oi
- Pll

a_l o

or in general

a00i
= PJi

a_j o

O0oi O0oi
- P31 ;

a_ 3 o O_ o
- P4 i

Substitution of the assumed s.olution into the equation then gives

E Ali E_j,pj i cos Ooi = EQIi cos 8ol
i J t

Equating coefficients of like cosines yields

All

Hence

S,

Q1 i

_'jl PJi
J

n QI_
= E

i=l E,j p] i
j jl

(i = 1 ..... n) (Zl)

sin 00i (ZZ)

With these values for So and $1, the determining function to the first

order in _l becomes

O:
S = 7. LjI_J0 + E --1,. sin O01 (23)

j i EuJIpJ i
J

The equations of transform then give

aS
- Ljl + ,_A1 t pJi cos O0i

Lj o -8_j 0 t

(J : z ..... s )(i4)

_jl : DS/DLjl : _J0 + E 8All sin 001
i 8Ljl
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The complete first order Hamiltonian function for this part of

the problem may now be written in the new variables as

Z Z )1FI # = _ It a,L 3 _- .85_ (LII4 + L414 /z
ZL,, z -, ZL41 z - 1_ 1

The cprresponding equations of motion are then

L'Jl -- 8FI*/OIPJl ; fjl = - 8F**/OLj,

The solutions of (Z9) may then be" written

Lj! = aj

lJ, = fjt + bj

where aj, fj and bj are constants.

(J = I, .... 5)

(Z8)

= ,.... ,,) (zg)

(3O)
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Substituting the values of _j0 from these equations into the expression

for 00i equation ( 9a ),

00i =

Upon defining

00i becomes

gives

5 _j n 8AI i 0_>2,pj i i - _ sin 0
J=l i=l 8Ljl

5

0x i = 2] pj itjl (ZS)
j =1

5 n

E Pj i W, 8Al k sin00k (Z6)
00i =01 t - j=l k=l 8Lj1

where the index of the second summation has been changed to avoid

confusion. This expression may then be written

F_ n BAlk5 I 8A t k s in00k + 7,

00i =01 i - J=l_ PJi L___I OLjI k=l+l 8Ljl

5 OA1 i
- _ PJ i sin001

J =1 8 Lj 1

sin 00k_

which is in a form to which the Lagrange expansion theorem is applicable.

Applying this theorem and performing the necessary simplifications gives

the values for cos O0i and sin O0i needed in the transform equations.

cos 00i = cos 01 i + (terms of first and higher order inEl}

sin 00i = sin 01 i + (terms of first and higher order in¢l)

Then, since Aii is itself a quantity of first order in¢ l, the transformation

equations become

Lj0 = Lji + E A 1 i pJi cos 0it

i j = I ,z .... s (27)

lj0 = lJl E E sin _i where E = 8Ali/OLjl
i ji ji

These expressions are of course a great deal more complicated when

higher order sol.utions are sought.
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DEVELOPMENT OF AN APPROXIMATE CANONICAL FORM

Substitution of the solution equations 30 or the transformation

equations Z7 will not yield equations in a canonical form in Fz , di-

rectly. Therefore, it is necessary to make further Small order

approximations to obtain equations in a form suitable f6r further

application of the procedure. To illustrate this, and to provide a

somewhat simplified outline of the developments performed in the

first transformation, consider the equations of motion 5a in the fol-

lowing form:

L" = aFl /0_ _ = - OF1 /OL
po po po po

L" _ OF, 0F___! ; = - 0Fl /8L + OFz /OL
qo 81 8_ qo qo qo

qo qo

(p = l,Z, 3) (q=4,5)

(31)

Fl = Fl (Lpo,_po, Lqo,lqo) Fz = Fz (Lpo,_po, Lqo,fqo)

The technique followed so far has been to obtain solutions to the equa-

tions obtained by neglecting Fz .

-8F,

Ljo 8F,/a_jo _. -= .lO 8L.
jo

(3Z)

(j = 1 --- 5)

The solution to these equations were found by solving the Hamilton-

Jacobi equation

Fl(_jo, SS/Oljo) = F_ (L.)J*

(33)
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I

4

where S is the determining function

s = s (L. ,_ )
Jl jo

The equations of transformation were then obtained from

L = OS/8_ .. _. = 8S18L
jo jo 31 jl

which gave

Ljo : Ljo (Lkl '_kl ) = Ljl + _A p.. cos 0 .
i fi j 1 ol

fjo = Rjo (Lkl ,Rkl) =. R. -E E sin 0]l i ji oi

(34)

(35)

Taking the total time derivatives of these equations and substituting

into the equations of motion 31

L + __22__ : or,/0_po
_Lrl " rl O_r=_l rl

( 36a)

r, L + po _ : - 0r,/0L
|SL rl 8_ r po

r=l L. rl rl

(36b)

h
Lrl rl 8_ rr=l rl

= 8FI/SR - 0Fz /OR (36c)
qo qo

5 I-0R oR 1_ qo L + ---q-°i8L rl OR r
r=l rl rl

(p : 1,Z, 3) (q = 4,5) (r= 1

- 0FI/OL + 8Fz /8L (36d)
qo qo

5)
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Multiplying each of equations 36a by alpo/OLkl and each of equations 36c

by Ofqo/OLkl where Lkl is one particular Lrl and adding gives

5 3 OL i)f "5 OL Of --

Z E po po + E qo _ L" +

0L 0Lkl OL 0 Lk!_l rlr=l I rl q=4 rl

po po + y qo f
Of 0 L Of O L [ =

1 rl k I q=4 rl

0fpo 0L qo OL qo 0
p=l kl q kl

(37)

Multiplying each equation 36b by OL /OL
po kl

by 0L /0L
qo kl

and adding gives

and each of equations 36d

= E - 0L po _ E

po 0Lklp=l q=4

5 Of OL s Of .

E po po + E qo L +

OL 8Lkl 8L 8Lkl J rl
r=l .Up_ rl q=4 rl

E Of O L E Of 0

rl kl q=4 rl

3 8F1 OL 5 0FI 0L s 8Fz

aL qo + E OL
qo 8L qo

kl q=4

(38)
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defining brackets as

tT_', /' 8L 8L 8Lklrl rl

+

8L 8L 8Lkl ]rl rl

_k r 7 3fOL o 8f, _ E Of
1 1 rl

8L 8f /

___P_O _P_9

8f 8Lklr!

/aL
zl q°
q=4t OLkl

8.1
qo

8_
rl 8f ri 8 Lki /

,_ = zl po _2o
l p=l\ 8ikl 8f rl

+

po

Of rl 8fki /

_.to, _, _ %)
q=4 x kl rl rl

and subtracting equation 37 froth 38 gives

51I__ Lr_l Lr, +_k "lr_l i I =-'r_= kl I ' r

+ - ,=.I__.
8f po 8 Lkl ) q=4\ qo

s (8Fz 8L
+ -- ,qo

q_=4tSLqo 8Lk,

3 fSFi 8L

_._-_o _o
p = i 8Lk,

qo+__
8f

8Lki qo 8Lkl/

8Fz Of o_

+ 8_qo 3_ki)

(39)

(40)
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Multiplying each of equations 36a and 36c by 3f
po

respectively and adding gives

and Of /Ofkl/ Of kl qo

z-_[z po po + z qo L

L__I OL O' OL 8fk_] r 1
r=l rl kl q=4 rl

+ 7. Of qo f r = 7. Ofpo Ofkl

q=4 rl kl__J /] p=, q=4

OL

Multiplying each of equations 36b and 36d by po

3fk,

[-_" OL Of

p[_ rl Ofkl (41)

OFI Of s 8Fz 3f
0_ qo _ r. qo

qo Ofk, q--40fq o Ofkl

OL

and qo

8fk!

ly and adding gives

_. po po + 7. ____qo L + _

OL Ofk, 8L 8fk,_] r,r=l . rl q=4 rl . =I

"%

qo

+ 7. qoof Of kJ _r_ =7. -_-_-po __ + 7. OLqo Ofklq=4 r, p=* 8K* q=4

respective-

Of 8L
po po

Of rl Of k,

+
5 0F__z OL
r. OL qo

q=4 qo 3fk,

(4Z)

subt, racting equation 41 from equation 4Z then gives

I rl[ rl I

r=l _ --_

5 / OF1 OL OF1
- 7. loL- no+ 0T

q=4 \ qo Ofk, qo

C
Olqo I s l"'OFz+ 7.fgff

Ofk, / q=a qo

8F, 3L 8F, Of

po + Ofpo po
8Lpo 8fk, 0fkl

OL OFz 0f \

qo+ 8f --fl-c 1Ofk, qo Ofk,

(43)

To evaluate the brackets it is necessary to transform the determining

function by means of the transform equations (35)
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S(L. ,_. ) = S'(L. ,_. ) j : 1 - - - 5 (44)
Jl jo J1 Jl

The partial derivatives of S' may then be expressed

s 8S O_

8S' + _ 8_ jo = _kl
8Lkl = _kl j=l jo 8Lkl

s 8S 81 s 8_
asj'= z _-F _m : z _J2 L

jo 8_kl 8_kl jo8_kl j=l. j =I

s 8_
z _is+ L

j=l jo 8 I-,kl

(45)

rewriting the brackets as ..... ,

I 'LJJ ° i: L P°+_L q°Lk I - 8Lkl po 8L qo 8L I
I rl q=4 r_

_ a_8_ L P° + Z L qo

8L po 8L qo 8L_
rl 1 kl q=4 1 ___

,_ - _ L po + EL

kl 8Lkl po 8J_ qo 8__ Il rl q_4

p_ 81 s klJ

__8 _. po + E L _q_o-_

-- Lpo 8L qO 8L
8_ i kl q=4

rl

r-----

, 8 1 3 8R

'_ - Lpo 8_
L-- I 1 rl E Lqo 8_riJq=4

- a-_-- po 8_kl Lqo 81kl__rl ._1 q=4

and substituting the derivatives of S'
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(_k,_'r_

k! '

_'k,Lr,jO'r,_,J
!

8Lkl L rlj rl L- kl

(46b)

(46c)

Then, since all L.
3t

gives

are independent variables, equation 46a

equation 46b gives

,f .....l= 0r!J
and equation 46c yields

_ rl_ 8_kl
,f = +

tJ ' a_
ri

or

_k --rl_ /

, L = - 6
l rk

r_k !

_ + = 6
r = rk

(47)

Substitution of equations 47 into the equations 40 and 43 gives.

. 3 _/aF_ OL OF_ of )f =- E |8-Lpo po + 8_ __p_or_ OL po OL
p=l rl rl

- 23 8Lqo 8L qo OLrl q=4t qo OL
q=4 rl rl

aFz qo8_ 1+ 8_qo aLr,

" ( _ / 't °_'°'' _' ).... qo +a_ a_rl

-L I

ri E a L Of Of Of rlrl po qo
p=l po q=4 rl

qo + 8_ 148)

OLqo of qo Ofri)q=4t rl

321



Now, the transformation of the previous section transformed

FI(L. , f. ) = 'Fl::" (L.) ' {49)
jo jo Jl

This of course is a special case of the more general transform

Fl (Ljo,ijo) = Fl':' (L.j1 '_'jl ") (50)

Derivatives of Fl ;:" may then be obtained as

OF1 ':: 5 i"SF 1 8L OF S]

_t.._ZO jo + 1 81rl J
OL = 2; 8L 8_

rl j =1 rl jo

and (51)

8L 8F1aFt* _ s aF__ ___J2_ +

8_ 2] 2 8_ 8_ 8Rr, DrI j=l jo rl jo

8FI _:_

where it is recognized that 0_. - 0 for the special case of equa-
Jl

tion 49, but the form of equation 51 is used here to maintain sym-

met ry.

Then combining the summations overp = 1 to 3 and q = 4 to 5

into a single summation over j = 1 to 5 in equation 48 and substitution

of equations 51, the following form is obtained.

':" [ 8L 8F 8_ _OF s OF z qo + _r_ qo

r, 8L =_4k8 Lqo 8L qo 8L Jr_ q r; r;

.-:.- . \

8F 5 / OF 8L 8F 8_ \

r, _ - a L a_ ai
rl q qo rl qo

(SZ)
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The same transformation must now be applied to F z . This yields

F z (Ljo,ljo) _-c> F z ' (L. ,t. ) {j=I,-,-5) {53)J, J,

The necessary derivatives from equation 53 are then

5 {SF 8L 8F 8R.
aF_EX_ = _[_____a jo + z )OL . _ 8L 8L 81. 8Lr, J=l jo rI .lO rl

)
OF z 5 / 8F OF

8_ - E 8 L 8_ 8_. OR
r, j=, jo rI jo r,

(54)

Now, referring to the transform equations (35) and remembering

from the previous section that all A . and E.. are terms of order
11 jx

el (O_,), it is seen that the derivatives of the old parameters in

terms of the new may be expressed as

8L. St.

-__L9_ - 0_, _i2
O_ at

rl rl

8L.

8L jr
rl

+ Oe I

= 6. + Oel
jr

(55)

01. _ J_r_._/9 = O_l where 6.=

8Lrl Jr[1 j=r

Further, the function Fz contains a multiplier ilz /L 6 which
10

is always a small quantity of order less than_, even though

it is not a cpnstant. Hence, by neglecting products of these

two small quantities equations (54) may be expressed

8F z'

8L
rl

OFz'

8_
rl

8Fz

8L
rO

._ 8Fz

8_
ro

(r = I,---5) (56)

323



Then, substitution of the relations (55) into the equations (5Z) and again

neglecting products of the small quantities, the equations of motion may

be expressed

L" OF, * 5 0Fz= - - 2; 5
rl D_ D_ qr

rl q=4 qO

-OF, * 5 8Fz

rl = OLr 1 + _ 8L %r
q=4 qo

r = I,---5 (57)

Then, substituting equations (56) and taking advantage of the properties of

the Kronecker delta, equations (57) may be expressed in expanded form.

Ln = OFf:'/O_,l _** = - 8F_:"/DLI,

Lz, = 8F,':"/D_z, _z* = OF*':"/DLz*

L3, = 8F,':'/8_31 _3, = 8F*':"/SL3* (58)

• 8FZ"' . OF z '

L41 = 8F1;:"/8_41- 8_41 _41 = 8F,;:"/_L4* + 8L41

8F z ,- _s* = 8Fi;:'/OLs* + 8Fz'
L , = 8F,_:"/8_5, 8_s , 8Ls*

Equations (58) are the new equations of motion to be solved. Now note,

that F, * of equation Z8 contains none of the _. terms. Hence, the first
J*

three equations in the left hand column of equations (58) become:

• °

Lll = 0 ; Lzl = 0 ; L31 = 0 (59)

from whence

LII = al = const. ; Lzl = az = const. ; L31 = a 3 = const.

(6O)
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Similarly, the second and third equations in the right hand column

ofequations (58) become

._ = 0 ; 131 = a (61)
21

where _ is a previously defined constant. Henc e,

f21 = cz = const. ; _31 = a t + c3 (6Z)

4

The first equation in the right hand column of equations (58) becomes

z 1.7Lll
_ll = Vt3 - _l (63)h 1 \_1+( L41 / Lll

To continue further with this approach, it is necessary that equation

63 take the form

_ll = ff

where ffis a constant. The appearance of L41

equation 63 thus produces considerable difficulty. Since L41

to the Lagrange multipliers, it will in general be unknown.

(64)

in the second term of

is related

However,

it might be noted that if L41>> L11, the second term will be much

smaller than the first and as such may be neglected. On the other hand,

when L41<< L II the second term will be of O 1 as compared with the
Z

first term of O1. Neglection of the second term under these conditions

is hardly justified and it will be necessary to assume some constant

value for L 41 in equation 63.
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The procedure from this point on must then be considered.

iterative in an actual calculation.

probably be

whe re al

A good first choice for _ will

is the constant of equation (60).

(65)

The problem must then

be solved and the resultant range of L41 and the corresponding range

of the neglected term in equation (63) examined. If this neglected

term does not remain small compared to _tz /a_ a new _ must be

chosen

_ = )12/a3- e, 1.TL,, [I+(L4',/L,,)_ -'/2 (66)

where L41 is some averaged constant value from the range of L41

previously calculated. The procedure must then be repeated until

the variation in L41 is negligible.

Returning now to the r_mainder of the problem, with_ll ex-

pressed as equation 64, _11

III = _t + cl

The relations for Llt,Lzl,

becomes

L3i, Rll , _zl, f31

(67)

from equations 60, 62

and 67 may then be substituted into FI;:' and Fz' and a new function

defined as

H I 541 ,Ls1 ,_41, 151,(al ,az ,a3,_,_,cl,cz , c3),

(68}

;Ic
t_= (F, -Fz')
"_ after

substitution

i#
_)2):"
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and the equations of the problem become

L41 = 0H'/af41 f41 =

L's, = 0H'/8_51 _5, =

(69)

However, to apply the same procedure as used in the first trans-

form, it is necessary to remove the explicit appearance of time

from the Hamiltonian of the problem• To do this, it is necessary

to introduce accessory variables and define a new Hamiltonian as

H = H' - _L61 - aL v l

The equations to be solved are then

L41 = OH/OR4 f41 = - OH/SL41

Lsl = 0H/ORs fsl = -8H/OLsl

L61 = 8H/8_6 f61 " 0H/aL61

L_l = OH/Of7 f;l = - OH/0L7 I

(70)

(71)
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THE SECOND TRANSFORM

The part of the forcing function that was neglected in the first

transform may be expressed in the form

Fz =-._--_ IL. ) + _. R (L.)cos
o jo or jo o

r=l

(j : 1, 5)

(7Z)

where

5

= 23 w. _.

or J"=1 jr jo

Substitution of the first transform relations of equations (Z7) yields the

terms in Fz in the following form.

T (L.) = Tl (L.) + 2] U (L.) cos O
o jo Jl u , u J, * u

R (L.) = R (L) +13 V (L) cos O
or jo I r jl v iv jl Iv

-6 A
-6 Ii

Ll0 = Lll (I-625p ._ cos O ]
i 11 L li

11

' Fc= + 23 $ w E os (0 -qJ )cos d¢o r cos qJl r _ j jr ji I i 1 r

- COS (O li + qjl r)_

Where Tl and Rlr are identical expressions to T and R with the
0 or

, is identical to q_or with the _jo replacedLjo replaced by Ljl and _bI r

by_jl Ulu and Vlv like Aii are terms of first order in _, .
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Rearranging and reordering the cosine terms, F z may be expressed

as

Fz' : - _ 1 (L.) cos (_ (73)
h=, x h j,

where

5

qblh = j=_ qjhlj,

Substituting the solutions of equations 60, 62, and 67_incorporating the

auxiliary variables and denoting F z ', Tl and B, after the substitution

as F z ;:', Tl ;:', B, ;:-', and _tz / al 6 as • z , the expression becomes

_T m ;,,..Fz"" =-•z l";(L41,Lsl,al,az)+ Z B (L41 Lsl a, az)
Ik ' ' '

k=l

•cos,
where

7

k = 23
i=4

(74)

+ q Cz
qik _ i, z k

Performing the substitutions in Fx and adding the auxiliary terms,

the Hamiltonian for the problem becomes

Z Z

41

+ E Z ITI _1: +

t_

- aa3 - •85_, (al4 + 544) I/z

m

E B ;:" ._
k=l 1 k cos d_l

- _L61 - aL7 I

(75)

The equations are given as equations (71) which may be expressed

L = aH/O_. 1. = - OH/OL. (j = 4,---, 7) (76)
j* Jl Jl Jx

The second transform now follows the same procedure as the first

transform. •z is the small parameter and H may be split into two parts,

H void of •z , and Hi all terms of which contain (z •
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z

H =
o ZL z

41
g

where the terms _

- .85 cl (a_ + L4d) - OL61 - a£,7, (77a)

-aa 3 have been neglected since they don't affect

the solution.

rn

Hi = Xl +. _'

k=l

where

XI = _ z T!

Ylk cos _Ik (77b)

and Y = c B
ik z ik

The object now is to transform the function H(L. ,_. ) into a function of
Jl Jl

the L. only
Jz

H(L. ,i. ) = H*(L. ) (j = 4,---7) (78)
Jl Jl Jz

As in the first transform, a determining function will again be used

in the form

S = S(L. ,_. )
Jz Jl

which gives the transform relations

L. = aS/_),lt. ,_. = OS/8L. (j = 4 --- 7) (79)
Jl Jl Jz Jz

The parts of the Hamiltonian in equations (77) then appear in functional

form upon substitution of equations (79) as

OS
H = n (8S/8_.) Hi = Hi (_-_ ,l. ) (j = 4--- 7) (80)
o o Jl Jl

Jl

The determining function may then be expanded in powers of the. small

parameter e z-

S = S + Sl + Sz + ___ (81)
o
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Where again, to insure the identity transformation when ez is zero,

S
O

is taken in the form

7

S = % L. f.

o j =4 Jz .11

(8Z)

Expanding the new Hamiltonian H*(L. ) in powers of the small
jz

parameter ez and substituting equations (82) and (80) into (78), the

Hamilton-Jacobi equation becomes

H 4:, + + -- + H_
o jz _0f. z

Jl Jl

= H *+ H *+H * + - -_)I 0 I Z

H
0

{OS_ aS z + ___)+ 0-U.
Jl Jl

(83)

and HI may then be expanded Taylor's series which to the first

order in tz become

H =H (L.)
o o Jz ,0HoIj=4 Jl .U

Ljz

Hi = H, (L. ,_k ) (84)Jz

Substituting equations (84) into (83) and equating terms of like order in

E z yields

H (L } : H*
o jz o

OH o [ OS1

G I Of.j =4 OLjl J l

L.
' Jz

= Hi * (Ljz)

+ Xz (L. ) + G y (L. ) cos ¢
Jz k z k Jz I k

where Xz and Y a're identical expressions to XI and Y
zk lk

L. replaced by L..
Jl Jz

with

(85a)

(85b)
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The necessary derivatives are evaluated from equations (77} as

OH
O

3L
41 L

jz

z l/zp.

+ _ - 1.7_, (a_ +L_) L_ =-n_,_
4Z

__Ho
8L

51
Ljz

aH j
O

 L6;!
L.

Jz

= 0
= - n5z

n6z

(86)

0H!O

OL7 1
---- -- O_ = -- n7 Z

U.

Jz

Using the notation of n.
jz

summation form may be expressed

7 3H i 7

o I aS---L=j=4 jl jx j=4 JZ
L

jz

as given in equation (86), the derivatives in

3S__1
8f.

J*

(87)

Referring now to equation (85b), it is seen that the second term Xz and

the right hand side, H**, are both functions of the L. only while the
Jz

other two terms are functions of both the L. and the f . Therefore,
.lz jx

the Hx ':'is only related to X z .

Hi':' (L.) = X z (L.) (88)
jz Jz
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4_

Substitution of equations (87) and (88) in (85b) then yields

7 8St

- n. = - E Yzk(L.

Jz 8_jl k Jz
j=4

) COS %5
ik

(89)

A solution of equation (89) may be taken as

S, = E C (L. ) sin %5
k z k Jz ik

(90)

Substitution of equation (90) into (89) then gives

7

Z _ C n. cos %5 = E y

k j=-4 z k qjk Jz Ik k z k
cos %5

Ik
(91)

from whence

Y
zk

C =
zk 7

E qjknjz
j=4

(9Z)

Equations (81), (8Z), and (90) then give the first order deter-

mining function

7

S = E b _ + E C sin%5 (93)
jz jl k z k 1 k

j=4

Substitution of equation (93) into the transform relations (79) then gives

the transform equations

Lj, = L. + E cos%5,Jz k CZk qjk k

R. = _ + E Djk sin %b
Jz J* k ,k

(j = 4,---7) (94)
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whe re

D = 0Cz k
jk 0TT--

Jz

Substitution into the expression for _ k and performing Lagrange

expansions to the first order in {z (as was done in the first transform),

the transform equations become

h = b + E C kqjk cos d_jl jz k z z k

_j, : _jz _Djk sin% k

(j = 4, ---7) (95)

where

4k
z

7

= E q +
j=4 jkfjz qz k c2

(96)

Th_ complete first order Hamiltonian in the new variables may

then be obtained from equations (77a), (85a) and (88) as

z 4 )l/zH':" (L.) = la - 85{ (a(+L [3L6z
Jz - ZL z • 1 4z

4Z

- aL7 z +{z Tz (Ljz)

(97)

where th'e expression Xz = {z Tz has been incorporated.

The new equations of motion to be solved are

8H *
L = _ _. = - DH':'/SL.

jz a_. Jz Jz
Jz

(j = 4---,77 (98)

These equations have solutions of the form

L : a. (j = 4,---7)
jz J

f. = b.t + c. (j = 4,---7)
JZ J J

(99)
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Where a. and c. are constants as well as the b. which are functions
J 3 3

of the a. and previously defined constants. Tz is obtained from the ex-
J

pansion of F 2 in a previous section by incorporating the results of the

first transform and then replacing L41 and L 51 by L4z and L 5z •

_ -z 3 )z -z z )zTz = 21 L4z4 + al 6 L4z - _(al+az64 al L4z (L4z +L5 z (100)

The expressions for b. may then be obtained from equations (97), (98)
3

and (100) as:

b4 = -_ + 4 4,1/z - _za4 Za z
(al +a4 j

( 1-a6 a'46 )

3 (1 + az)z (a4+as } (2a4 + a5 }_
32 al J

3 a4 z (1 + az} z (a4+as)
b5 = + 3-'_ _z at

b6 =

b7 = _'

(101)
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THE SOLUTION FORM

The preceeding sections have explained the transformations

necessar_ to integrate the differential equations (5) or (5a). To be

useful, it is necessary to express the original variables (Ljo'ejo) in

terms of the constants of integration.

The two transform relations were obtained as equations (Z7)

and (95) and are repeated here for compactness of the following

discussion.

Ljo = Ljl + _ A (L.) pj cos qb.1 1i Jl i 11

= _. - ZE..(L ) sin q5 .
jo jl i j1 Jl 1 1

(j = 1,---5) (Z7)

and.

L = L + Z_ C (L ) cos _zjl jz k z k jz qjk k

23 (j = 4,---7)
= g - D (L.) sin q5

_jl jz k jk Jz z k

(95)

Also, 'in the process of determining a canonical form for the second

transform, the following relations were generated

L. = a (j = 1,---3)
jl j

(lOZ)

= _t + cl • f = c z • _ = at + c3_II ' 2 1 ' 31
(lO3)
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Now, denoting a. = L (j = I, ---, 3) to aid in notation, the
J jz

equations

L. = L (j = I, ---3)
Jt jz

may be considered as part of the second transform equations.

Next, each A (L.) may be expanded in a Taylors series
li Jl

about the point L. = L to the'first order
Jl jz

5°A1A .(L. ) = A .(L. ) + X l_ (L -L ) + ---

Ix Jl zl Jz j=l aL. ji jz

Jl L.
Jz

The terms (L. -L ) are determined from equations (104) and (95) as
Jl jz

(L.-L. ) = 0 (j = 1,---,3)
Jl Jz

(L. -L ) : EC _b (j : 4, 5)
Jt jz k z kqjk c°s z k

(104)

(105)

(106)

Hence

s _A z
A = A (L ) + X Z i C cos

li zi jz j=4 k 0L z kqjk z k
jz

(107)

where A is an identical expression to A with the L. replaced by L.
zi li Jl Jz

Equations (107) and the first of (95) may then be substituted into the

first of equations (g7) to yield

L
jo = Lj z +2; C kq.kS.COS_ + ZA cos 0k z J J z k i z iPj i li

X!_ 23 OAzi C cos* pj cos
+ i _h=4 k 8Lhz z kqhk z k i

337



Now, noting that A . is of order _, and C is of order _z
zx zk

neglecting terms of order _l_z , this becomes

and

_'jo = Ljz + _ C 5. cos _b + _.A p cos 0k z kqjk j z k i zi ji li

whe re

j--l'z'3 j 4,5
from equations (99) and (101) it is seen that_6z = _61 and

= R_ I. Aiso, in the formulation of the canonical form it was

specified that

_61 = pt + cl = _1

and

(IO8)

_7 1 =oft + C 3 = _31

and in addition, qsk

specified that

= qlk and q7 k = q3k" Consequently, it may be

_Zl = _zz

_31 = _3z

are transform relations replacing the tbl

(95). With this notation, d_z k becomes

5
O0 =

zk _"
i=l qik _"lz

(lOB)

andR7 I relations of equations

(109)

338



Now, returning to equation (108),

5

O = E _.
li j=, Pji J,

0. may be expressed
II

substituting for the f.
Jl

5 5

=23 pj _. __._i i Jz
j=I j=4

Defining

5

@ = >-:, ._.
zi . Pji Jz

J=I

from equations (109) and (95) gives

Pji _ Djk sin % k

and

8 = @
li zi

cos 8.
Ii

5

2] E DjkPj i sin %5z k
j=4 k

(110)

cos 0zi +_ 2] _DjkPj i _os (%5 k-0z.i)-cos((h k+0 z
j=4 Z 2

+ (terms of higher order in ez ) (111)

Substitution of equation (111) in equation (108) then gives

Ljo = Ljz + EA cos e + 23 C 6. cosq5i zi Pji zi k z k qjk j z k

i
+ --23

Z i 23 EA s (%5 k-0z i) - cos(%h=4 k ziPjiDhkPhi z k+

or again neglecting terms of order _, ez ,

Ljo Ljz + 2_A p cos e +23 C 6. cos I (llZ)= i zi ji zi k z kqjk 3 k

NOw returning to equation (27), the W_.. (L.) may be expanded in
jl J1

Taylor's series in the same manner as the A
li"
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5

(L.) = E (L.) + 2; 7` OEJi C cos _

Eji 3* ji Jz h=4 k OLjz z kqhk z k

(ll3)

Substituting equation (I13) along with equations (108) and the second

of equations (95) into the second of equations (Z7) then yields

jo = _ - 7` Djk6. sin _ _ 7. E (L. ) sin 0
jz k J z k i ji Jz I i

5 0E..(L. )

_ 7, 7` 7, )I Jz C cos _b sin'8
8L. z kqhk z k *i

i h=4 k Jz

(I14)

From equation (110) neglecting terms of order ez and higher,

sin 0
li = sin 0 -- 2; 2; DjkPj i in (qb + 0

zi Z j=4 k z k zi'

+ sin (_zk- 0i_
(115)

Substitution of equation (115) into (114) and neglecting terms of order

elez and higher gives

_jo _'Jz - kT D̀jk 5'J sinqbz k _ 7:i E..(L.j1 Jz ). sin 0z i
(I16)

Replacing the Ljz and _jz terms in equations (IIZ) and (i16) by their

constant values then gives the relations between the original variables,

the constants of integration and time.

Ljo = a.j +:Ei Azi(ah}Pj i cos 0zi (bht+ch) + _ Czk(ah)qjk6j cos Ozk(bht+Ch)

jo : (b.t+c.) - _Eji(a h) sin 0 i{bht÷Ch)-_Djk(ah)Sj sinqb k(bht+Ch)J J z z

1117)

(j = 1,---,5) (h-- 1,---,5)
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where

and

f-
=10 j = 1,Z, 35.

j _1 j 4,5

bl = [3; bz = O; b3 = a

b4 and b5

Cl , • • • , C 5

are given in equation (101) and the constants al ..... as ,

are the constants of integration obtained previously.
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CONCLUSIONS

The analytical procedure for obtaining a first order approximate

solution to equations evolving from equations representing a general

minimum fuel low thrust problem has been presented. The actual

evaluation of the constants of integration depends of course on the

nature of each particular problem.

It may be expected that this procedure, especially in the first

order format presented here, will be more applicable to situations in

which the vehicle makes many orbits around a central body to attain

orbital transfer or to rendezvous with or intercept another orbital

vehicle. Calculations of interplanetary transfer with this procedure

will probably require higher order approximations.

The determination of higher order approximations with this pro-

cedure is straight forward through the first transform. This requires

the simple (though tedious) expansion of the FI disturbing function to

higher powers of the eccentricity; the inclusion of higher order terms

in the expansions of the determining function, Fl':: and all Taylor's

series; and the performance of the extra steps required to determine

the higher order terms of the _letermining function. The extensions

required in obtaining a canonical form for the second transform are

not obvious. However, it might be noted that the need for the higher
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order solution will most likely result when the conical eccent'ricities

are expected to be large. A look at the term Ez which multiplies the

entire F2 term indicates that it is a function of the inverse cube of

the semi-major axis. Hence, as the eccentricity increases _z de-

creases at a much faster rate and the n.eglection of the entire F z term

may be feasible.

The next step in the development of this procedure will be the

attainment of numerical results for a physical problem. The weakest

point of the method so far (other than the order limitation)appears to be

the iteration procedure that is required to obtain a good value for the

term in obtaining the canonical formulation for the second transform.
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/

SUMMARY f

The generalized Newton-Raphson method is used to
determine optimum, coplanar, circle-to-circle, transfer

trajectories for low thrust space vehicles operating in
f

a strong central force field, such as a near earth orbit.
/

Optimum thrust steering programs are computed for progres-

sively increasing values of final time up to durations /
i

• /
involving 26 revolutions about the earth A description /
of the numerical results and a comparison of these with /

the results of a previous linear analysis are given. /
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: INTRODUCTION

This paper is concerned with the computation of opti-

mum, orbital transfer trajectories for space vehicles with

low thrust, electrical propulsion systems operating in a

strong central force field, such as near-earth orbits. Al-

though the magnitude of thrust acceleration for interplane-

tary and geocentric low thrust missions can be similar, the

optimum trajectories for the two missions are quite differ-

ent. This is due to the predominant gravitational attrac-

tion of the earth, which at an altitude of 200 miles is more

than 1500 times greater than the gravitational attraction of

the sun at a distance of one astronomical unit. Thus, many

orbital circuits are required for a low thrust vehicle to

complete various geocentric missions.

Many of the problems associated with optimization of

geocentric low thrust trajectories stem from the large

number of revolutions about the earth required of the vehi-

cle. One of these problems is the sizable accumulation of

round-off and truncation error resulting from the many inte-

gration intervals. A second difficulty, associated with

some of the successive approximation techniques, is the need

to store the control variables as functions of time. If the

functions are rapidly changing ones, the amount of computer

storage required may become prohibitive. A third difficult_

usually associated with the classical indirect methods for

solving the boundary value problem, is the extreme sensi-

tivity of terminal conditions to initial conditions of the

multipliers. As the number of revolutions for an optimum

trajectory increases, the sensitivity may be intensified to

a point where systematic computer procedures will not con-

verge to the desired solution.

Several successive approximation techniques, each em-

ploying a variation-of-parameters integration procedure,

have been developed (Refs. i and 2) and programmed for

IBM 7090 computation. 'Although these methods have proven

partially successful, satisfactory convergence to solutions

of the multiple pass problem have not been achieved. As an

alternate approach to this problem, the generalized Newton-

Raphson method (Refs. 3 and 4) has been used with consider-
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able success. The algorithm for this method solves a se-
quence of linear boundary value problems such that the
sequence of solutions converges to the solution of the non-
linear problem. Because the linear boundary value problem
is easily handled numerically, the algorithm is readily
adaptable to high speed 3 digital computation. Another ad-
vantage is that the initial approximations do not have to
satisfy the differential equations or the boundary condi-
tions. Thus, simple starting functions, such as straight
lines or unperturbed two-body orbits, are usually adequate
for convergence to the desired solution.

The specific problem treated in this paper is that of
determining the optimum thrust steering program that will
minimize the time to transfer between coplanar, circular
orbits. Since the thrust magnitude is fixed, minimum time
is equivalent to minimum fuel.
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SYSTEM MODEL

For the system model, only coplanar motion in a geocen-

tric inverse-square gravity field is considered• The vehi-

cle is taken as a mass particle with a thrust vector con-

stant in magnitude and variable in direction• The problem

is to determine the optimum thrust steering program for

minimum time transfer from a circular orbit at an altitude

of 200 statute miles to a higher energy circular orbit.

Because the vehicle's mass decreases linearly with time,

minimizing time is equivalent to minimizing fuel.

The equations of motion in polar coordinates are

2
• v k T sin e
u - +

r 2 m +_t '
r o

T cos e• UV
V-- - --+

r m + fnt '
0

r=u,

• V

r

Here, k is the gravitational parameter of the earth; T

is the thrust; e is the thrust steering angle; mo is the

initial mass; and • is the time rate of change of the

vehicle's mass. The state variables are defined in Fig. i.
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The basic numerical data used for most of the computations
are

k = 1.408 x 1016 ft3/sec 2 ,

r = 2.19825 x 107 ft ,
O

g = 32.2 ft/sec 2 ,

T = I0 ib ,

W = i0,000 ib ,
O

I = 5000 sec ,
S

m = W /g = 310.559 slug ,
O O

= -T/Isg = -6.21118 x l0

u = 0
0

1

v ° = (k/ro) 2

-5
slug/sec ,

where g is the gravitational acceleration at the surface

of the earth, W o is the vehicle's initial weight, and Is

is the specific impulse
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VARIATIONAL TREATMENT

The results of this paper were obtained by the indirect

method of the calculus of variations in conjunction with the

generalized Newton-Raphson algorithm (Ref. 4). The exis-

tence of a solution to the nonlinear optimal control problem

is assumed and the necessary conditions are obtained by the

application of the Pontryagin maximum principle (Ref. 5).

For the problem treated herein, the necessary conditions may

also be obtained by classical procedures (Refs. 6 and 7).

These necessary conditions form a nonlinear, two-point,

boundary value problem• For the problem of this paper, the

relevant boundary value problem is given by the following

sixth order system:

= u = f(1)

2 a(t) h
6 _ v k + u = f(2)

i

r 2 g

r ÷
a(t)%

uv + v- l = f(3) ,

r (h2+h2) _u

= 2k _ _ u_xv_ = f(4) ,

r u r 2 v

• f(5)h =- h +vh =
u r r v

h -- - 2__Evh + u h = f(6)
v r u r v

J
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where

a(t) =
T

m +_nt '
O

and the boundary conditions are

at t = 0
O

r(O) = r
0

u(0) = u
O

v(0) = v
O

at t = tf

r(tf) = rf ,

u(tf) = uf ,

v(tf) -- vf •

(tf unspecified)

This may be written as

where

and

x (I) (t) = r(t)

X = F(X, t) ,

X = (x (1),

F = (f (i),

, x(2) (t) = u(t) , x (3) (t) = v(t)

x (4) (t) = h (t) x (5) (t)= hu(t) x (6) (t) = hv(t) .r '

The generalized Newton-Raphson algorithm proceeds by

solving the following sequence of linear, two-point, bound-

ary value problems:

Xn+l = J(Xn, t)[Xn+l(t ) - Xn(t)] + F(Xn, t) ,

n = 0, i, 2, ...,
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where J(X, t) is the Jacobian matrix of partial deriva-

tives of the f(i) with respect to the x (i) i, j = I, 6, • • •, •

The boundary conditions for every n are those given above•

A starting vector, Xo(t ) , and an estimated final time,

tfo , are assumed and the sequence of linear boundary value

problems is solved numerically by the method described in

detail in Ref. 4.

The basic starting vector

simple form:

x (1)(t) = r (t) = r
O O O

X 0 (t)

rf - r°
+

tf
O

is of the following

t ,

x(2) (t) = u o(t) .= 0 ,
0

(3) k
(t) -v (t) = |

Xo o [r ° (t)

x (4)(t) -- % (t) = i ,
0 r

o

i

x (5) (t) = h (t) -
U
O

c I

c2

for

for

_ (0__o_

_ (__, _oI
0

x (6)(t) - % (t) =
V
0

c3

c4

for

for

_ I°'__o)

0 0
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Most of the results described in this report were ob-

tained by first producing a solution using the above simple

starting vector, Xo(t). Then a parametric study was per-

formed by varying the relevant parameters (T, 6, rf, etc.)

and employing the solution for the previous set of parame-

ters as the starting vector for the succeeding set.

For transfers that required more than approximately

two-thirds of a revolution, the constants Cl, c2, c3, and

c4 above, were chosen to correspond to constant circumfer-
ential thrust. For shorter term transfers, these constants

were chosen to correspond to an initial thrust program that

is outward along the local vertical for the first half of

the transit time_ and inward along the local vertical for

the remaining half. For a few transfers3 which required

many revolutions_ the solution to the nonlinear state equa-

tions corresponding to constant circumferential thrust was

used for the starting vector, Xo(t). For the many revolu-

tion transfersj this choice of starting function appears

more efficient than the simplified starting functions given

above, even though it does not meet the boundary conditions.

For purposes of obtaining transfers that have certain

particular properties it was found convenient to treat the

original time optimal problem as a fixed time_ maximum

radius problem. This introduces a boundary condition of a

more general class than previously handled within the frame-

work of the generalized Newton-Raphson algorithm. The

boundary condition appears as a nonlinear functional rela-

tion between the final value of the local horizontal ve-

locity, v(tf), and the final radial distance, r(tf), viz:
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2 [ ]2(r(tf), v(tf)) -- v (tf) - k r(tf) = 0 .

The procedure used for these cases was as follows: An

approximate value for v(tf) was changed automatically at

each step of the iteration, on Xn, by means of the recur-

sion formula

l[Vn+ l(tf) ½[kr n(tf) -I]5
= 3

rn+ I (tf) ]
rn (tf)

This formula results from the Newton-Raphson sequence for

the scalar valued mapping _3 with an initial estimate

ro(tf), v0(tf)]. As n-+ _, Xn(t)__ -+ X (t), rn(tf) -+ r

Vn t(f) -+ v,* where XW(t)

differential equations and

boundary relation _ = 0.

is the solution of the nonlinear

(r* v*) is the solution of the

This procedure was entirely sys-

tematic and exhibited good convergence properties over the

range of problems studied herein.

COMPUTATIONAL RESULTS

Computer programs utilizing the generalized Newton-

Raphson method have been developed to optimize circle-to-

circle transfers both for minimum time problems with speci-

fied values of final radius and for maximum radius problems

with specified values of final time. The minimum time pro-

gram was used to generate solutions for progressively in-

creasing values of final radius up to durations involving

21.3 revolutions about the earth. The basic numerical data,

given on the preceding pages, were used for this series of

computations.

356



For values of final time up to a few orbital periods,

the results are quite similar to those obtained from a pre-

vious near-circular linear analysis (Ref. 8). Figure 2

shows the optimum thrust steering programs for very short

durations, up to one orbital period. Although the solutions

shown are taken from the linear analysis of Ref. 8, the dif-

ferences between these and the latest nonlinear results are

at most 2° for the one revolution case. The time scale for

each solution has been normalized so that a comparison may

be made on a common scale for which the normalized time

varies from zero to one. It is noted that the time varia-

tion of the thrust steering angle, e, is antisymmetrical

with respect to the midpoint. For the very short durations,

1/6- to I/2-revolution, the 8 motion has a mean of

@ = 180 ° (opposite in direction to circumferential thrust),

whereas the corresponding motion for durations of 2/3-revo-

lution and longer takes place about a mean of e = 0 (cir-

cumferential thrust). Also shown in Fig. 2 is the thrust

steering angle for one revolution. For this case e is

very nearly circumferential.

In Fig. 3 the e scale is considerably enlarged and a

comparison is made between the linear and nonlinear solu-

tions for the 2½-revolution example. The difference is

still very small, about +3 °. However, it is noted that the

duration of the last period of the nonlinear solution is

slightly longer than that of the linear solution, whereas,

the first periods of the two _ time histories are almost

identical in length. This characteristic is more apparent

for the longer duration transfers, and is due to the thrust
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FIG. 2 NORMALIZED OPTIMUM THRUST

STEERING ANGLE FOR TRANSFER

TIMES UP TO ONE ORBITAL. PERIOD

- LI NEAR ANALYS IS -

270

N = I/2 REV.

N = I/6 REV.

Or)
14.1
I,U
n-

I.iJ

.I

180

90

I REV. J'

N = 5/6 REV.

NORMALIZED TIME-t/tf 1.0
I

N = 2/:5 REV.
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steering angle e always being in phase with the vehicle' s

orbital angle, _ (see Fig. I), i.e.3 as the altitude in-

creases the orbital period, and therefore the period of e

motion, also increases.

Figure 4 is also taken from the linear analysis of

Ref. 8 because the differences are still relatively small.

For N = 1½, 2½, and 3½, the amplitude of motion is de-

creasing and approaching a circumferential thrust program.

Also, for N = i_ 2, and 3_ the thrust program of the

linear analysis is exactly circumferential, and only nearly

circumferential for the nonlinear results of this report. A

search was made for a e(t) = 0 program for a series of

solutions from 13½ to 14½ revolutions. It is clear from

the results of this search that an exactly circumferential

thrust program does not exist, the closest being a minimum

amplitude of 3.2 ° . It has been proven independently by

H. J. Kelley and R. McGill that e(t) = 0 does not satisfy

the Euler-Lagrange equations_ except in the limiting case

when the thrust acceleration, T/m, vanishes.

A typical optimum thrust steering program for 19 revo-

lutions is shown in Fig. 5. As previously mentionedj the

motion throughout the flight is in phase with the orbital of

motion. Also characteristic is the relatively large e

motion at the beginning of the transfer that diminishes to a

3½ ° to 4½ ° amplitude near the end of the maneuver. A

check of the time history of eccentricity reveals that the

maximum values of eccentricity build up from .0045 to

.0095, and that the minimum values are very small (less

than .0004) but never exactly zero except at the two termi-
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nals of the transfer. Using the generalized Newton-Raphson

method, this particular solution required computation of 24

trajectories, 5 iteration cycles, 425 constant integration

intervals per trajectory, an average of 22 intervals per

orbit (17 intervals for the first orbit), and a total of 49

seconds of IBM 7094 computer time.

The solutions obtained are, of course, locally optimum,

and no attempt has been made to search for a different class

of optimum trajectories that may yield better performance.

Should such a class of solutions exist, they would most

likely be revealed for the significantly longer duration

maneuvers.

Because the equations of motion of the linear analysis

only the single parameter T/mo_, it is possiblecontain

to plot a "miles-per-gallon" nondimensional parameter,

Ar_/2_Nf(T/mo) , as a function of the number of revolu-

+_°_vLLO, L_f, required to cu_LL_eLe the transfer. _nis gen-

eral type of plot, taken from Ref. 8, is presented in Fig. 6.

Given the thrust/mass ratio of the vehicle and the frequency

of the original orbit, the increase in radius of the circu-

lar orbit may easily be computed as a function of the number

of revolutions.

Similar performance results, obtained with the gener-

alized Newton-Raphson method, are shown in Fig. 7 and do not

significantly differ from the linear results. The improved

performance is due to the more realistic mathematical model

of the nonlinear analysis that takes into account the de-

crease in gravitational attraction and reduction in vehicle

mass as the duration of the maneuver increases.
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All of the previously discussed numerical results apply

to a vehicle with T/W = .001 g's and I = 5000 seconds.
O S

A brief vehicle parameter variation was carried out and is

summarized in the following table for a fixed value of final

time equal to 40.29 hours. The final time of 40.29 hours

was s&lected because it corresponds to a transfer of 20

revolutions using the basic numerical data.

T/W I AR NfO S

(g's) (sec) (miles) (rev)

.0025 5000 10,658. 13.064

.001 5000 2,134. 20.046

.0005 5000 893.6 23.123

.00025 5000 413.9 24.792

.0001 5000 158.2 25.852

.001 i000 2,323. 19.824

Although there was no difficulty in computing an opti-

mum transfer consisting of 21.3 revolutions, it was not pos-

sible to _achieve convergence to an accuracy of four signifi-

cant figures for a transfer involving 21.5 revolutions.

This appears to be the limit for the generalized Newton-

Raphson method employing ordinary polar coordinates and a

simple second order, modified Adams, predictor-corrector,

numerical integration procedure. The difficulty appears to

be associated with the size and number of integration in-

tervals rather than the number of revolutions, because there

was no difficulty in computing a 26-revolution transfer with

a thrust acceleration of .0001 g's.
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APPROXIMATE ANALYTICAL SOLUTIONS

In Ref. 8, optimum, low thrust transfers between neigh-

boring circular orbits were determined for vehicles with

constant thrust acceleration. It was shown that if the

deviations from an original circular orbit are small, the

equations may be linearized, and the resulting optimal solu-

tions are globally minimizing. Furthermore, whenever the

duration of powered flight is some integral multiple of the

orbital period, the optimum thrust direction is circumferen-

tial, and the vehicle passes through a higher energy circu-

lar orbit condition at the end of each revolution.

The numerical results of the linear analysis (Ref. 8)

show that for integral number of revolutions

2

Yf_o

mf (T/mo)
= 2 , (i)

where yf = Ar = rf - r is the gain in altitude, _ iso o

the initial orbital frequency, Tf = _otf is the nondimen-

sional value of final time_ and T/m ° is the constant

thrust acceleration. For constant orbital frequency, the

number of revolutions, Nf, is by definition

_otf

Nf - 2_ " (2)

Equation (i) may be rewritten as

2
Ar0o

o
= 2 (3)

2_Nf (T/mo)

which is the altitude gain parameter plotted in Figs. 6 and

7.
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Equation (3) may also be derived from simple energy

concepts, assuming that the thrust program is circumferen-

tial. The final energy of the vehicle is expressed as the

sum of the initial energy plus the work done by the rocket

(work is thrust multiplied by the distance traveled, 2_roN f)

mk mk

i mov2 o V2 o- ½ m - -- + 2_roTN f . (4)
rf O O r O

Because the initial and final orbits are circular (V2 = k/rf

and V2o = k/ro)' Eq. (4) reduces to

2

4_TNfr or f
(5)

ar = rf - ro = m k
O

Also, for neighboring circular orbits_

3 2

i r ror fO

2- k N k
60
O

which reduces Eq. (5) to (3).

As a measure of performance, the following two equa-

tions, obtained from Eqs. (2) and (3), indicate the number

of revolutions and time it takes for a given vehicle to

transfer between circular orbits with specified radii:

Nf=

2

- ro)o(rf

4_(T/m o)
(6)

t f=

-r)o(rf o

2 (T/mo)
(7)
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Comparison of the numerical results, based on the non-

linear mathematical model, with those obtained from Eqs. (6)

and (7), shows that there is good agreement for transfers

involving one or two revolutions. Thereafter, the differ-

ence between linear and nonlinear results progressively in-

creases (see Fig. 7). For the 19-revolution example, the

errors in the above linear equations are 77 per cent for Nf

and 36 per cent for tf. This is due to the assumption in

the linear analysis that the gravitational attraction and

mass of the vehicle are constant.

If, however, _ and m in Eqs. (6) and (7) are con-
O O

tinuously rectified, the new expressions should be in closer

agreement with the nonlinear results. In the following

derivation, N and t are considered as functions of r:

2 2
_ (r - r) 00

N = o o dN _ o for r = r

4_ (T/mo) ' dr 4_ (T/mo) o

00 (r-r)
o o dt o

t -- 2(T/m o) ' dr 2(T/mo) for r = ro "

2

For r substantially greater than ro, the quantity 00°
2

is replaced by e = k/r3;-

rf rf

Nf=J dN dr = jdr

r r
O O

(k/r 3)

4_ (T/m o)
dr , (8)
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rf rf

tf = dr

r r
O O

!

(k/r3) e

2 (T/mo)
dr 3 (9)

and integration carried out with respect to

k [1 1= 2 r 2 '
Nf 87 (T/mo) ro f

r 2

(10)

tf- (T/mo) - ( •
(ll)

For the 19-revolution example, the errors with respect to

the computed nonlinear results are reduced to 1.06 per cent

for Nf and 1.23 per cent for tf.

Because mass in the integrals of Eqs. (8) and (9) is

treated as a constant, a further improvement is possible by

utilizing Eq. (ii) and expressing mass as a function of r:

I+ _nt = moil[ + _n k _ _
m m

O
(12)

If this expression is substituted in Eqs. (8) and (9) and

integration is carried out again, then

k

Nf-- 8_(T/mo) (i+ T_ro ] )(_"_- _f2 _) -_ T( ]k-_-_-_r5j _rSf_]k--_eh}
O O

, (13)

370



- ±_ f_U -
i k e _ k e i + ) • (14)

tf- (T/mo)

For the 19-revolution example, the errors are further re-

duced to 0.20 per cent for Nf and 0.15 per cent for tf.

Because Eq. (14) is an improved expression for t as a

function r, it is possible to repeat integration, again

and again if necessary, in an attempt to reduce further the

errors. This has not been carried out as the accuracy of

the nonlinear results is not better than four significant

figur es.
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Summary

The generalized Newton-Raphson method, an iterative

procedure for solving nonlinear operator equations, has

been extended in application to variational problems with

bounded _ontrol variables. A minimum fuel interplanetary

low thrust orbital transfer problem is worked out in detail

to demonstrate the practical aspects of the algorithm as

well as its computational effectiveness. The control vari-

ables are the thrust magnitude, limited from zero to some

prescribed maximum value, and the thrust steering a?_

/Uf
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INTRODUCTION

For variational problems, not involving inequality con-

straints on state or control variables, the state equations

and Euler-Lagrange equations generally consist of a system

of nonlinear differential equations with two-point boundary

conditions. For such a system, the generalized Newton-

Raphson technique proceeds by solving a sequence of linear

boundary value problems in such a mannerthat the sequence

of solutions converges to the solution of the nonlinear

boundary value problem. The generalized Newton-Raphson op-

erator technique has been developed for such systems of or-

dinary differential equations with two-point boundary condi-

tions (Ref. i) and successfully applied to various uncon-

strained variational problems (Ref. 2).

In this paper, we consider variational problems with

inequality constraints on at least one control variable.

Following Valentine (Ref. 3), a new variable is introduced

such that the inequality constraint may be replaced by an

equivalent equality constraint. The resulting nonlinear

system of state and Euler-Lagrange equations now consists of

differential equations and algebraic equations. The gener-

alized Newton-Raphson method is applied to this nonlinear
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operator equation. Again, this is accomplished by solving

a sequence of linear operator equations such that the se-

quence of solutions converges to the solution of the non-

linear operator equation.

The algorithm is applied to the computation of minimum

fuel, low-thrust, Earth to Mars orbit transfer trajectories,

with bounded thrust magnitude.
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PROBLEM FORMULATION

Given the differential constraints

_i = _ " f (t u I, .., um) = 0 , (i)i i , x I• •• •, xn, •

i = i, 2, ..., n ,

and at most 2n+l end conditions involving

well as inequality constraints

t and x i, as

u K _< uK_< uK , K = i, ..., r _< m ,
min max

the problem is to determine the state variables xi(t ) and

control variables uj(t)
so as to minimize the function

P = P(t0, tf, x l(t0), ..., x (t0), x !(tf), ..., xn(tf)_ .
\ n

A set of new real variables _K is introduced

(Refs. 3-6) 3 and the inequality constraints on the control

variables are replaced by

Let

CK = (UK- UKmin)IUKmax -UK>- _2 = 0

K = i, ..., r < m .

F _-

n r

I h i(t) _i + I

i=l K=I

XK(t)¢K = 0 ,

(2)

(3)
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where the h(t) are undetermined multipliers. From a modi-

fication of the classical calculus of variations (Refs. 4-8),

we obtain as necessary conditions for the existence of a

local minimum of P:

(a) the Euler-Lagrange equations

d 8F 8F

dt _. _x.
l l

- 0 , i = i, 2, ..., n

_F

_u. - 0 , j = i, 2, ..., m (4)
3

_F

_eK- 0 , K-- I, 2, ..., r ,

(b) the transversality conditions

_F _F

dP + _ dx i + F - _'i at

i=l l i=l

tf

= 0 ,

to

where the dt and dx. are differentials which are
1

connected by the prescribed end conditions,

(c) the Weierstrass condition, which for this problem is

equivalent (Ref. 4) to the requirement that

378

n

H = I hifi(t' xl' "''' Xn' Ul' "''' urn)

i=l

be maximum with respect to the control variables

satisfying the imposed inequality constraints.

U,
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To obtain the solution of the problem stated above, the

generalized Newton-Raphson algorithm is applied to the oper-

ator equation consisting of Eqs. (i), (2), and (4). This

operator equation consists of a two-point boundary value

system of order 2n, in addition to a system of scalar equa-

tions of order m + 2r. The following numerical example

should clarify the computational procedure.

LOW-THRUST ORBITAL TRANSFER EXAMPLE -- MINIMUM FUEL

tial mass

velocity,

flow, _,

_max 6.937 x i0

The problem we wish to consider is closely related to

the last example in Ref. 2. Kelley et al. (Ref. 9) have ob-

tained results to the minimum time version of the problem

via gradient techniques. We wish to minimize the fuel con-

sumption of a low-thrust ion rocket which is to transfer

from the orbit of Earth to the orbit of Mars, in fixed time.

The orbits of Earth and Mars are assumed to be circular and

coplanar, and the gravitational attractions of the two

planets are neglected. The system parameters are: the ini-

m0, 46.58 slugs; the constant equivalent exit

c = 1.831 x 105 ft/sec; and the propellant mass

which is required to remain within the bounds

-7
slugs/sec, and _min = 0.
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I
We now proceed to the formal statement of the problem.

Given the differential constraints:

r -- w

2

,_v K +c_-- sin e
r 2 m

r

c_
= wv+- -- -- cos e

r m

with the boundary conditions:

t=t 0

r (to) -- r 0

w(t0) --w0

v(t0) --v0

m(t0) = m 0

t=tf

r (tf) -- rf

w(tf) = wf

v(tf) = vf

m(tf) _ open ,

where w and v

ties respectively;

direction angle measured from the local horizontal.

dition, given the inequality constraints

(5)

are the radial and circumferential veloci-

r is the radius; and e is the thrust

In ad-

_min --<_ --<_max '

determine the state variables r(t), w(t), v(t), m(t)

control variables @(t) and _(t) so as to minimize

38o
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P = - m(tf) .

Rewriting the inequality constraints on $ as

(_ - _min ) (_max
2

-_) -_ --0,

the Euler-Lagrange equations, Eqs. (4), become

2

_ wvr w v r2

h __ % v_ h
w v r r

=- 2h v+% w
v wr vr

_ c_(h sin e + h cos (9)
m 2 w v

m

c_
0 = --(-h cos @ + % sin _)

m w v

(6)

C

0 = m(hw sin 0 + kv cos _) - hm - %_(_max + _min - 26)

0 : _h .

Equations (6) and the Weierstrass condition imply

.i

sin _= h { +h
W \ W

_l

h2 2v_ 2cos e = %v ( w + h

(7)
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Substitution of Eqs. (7) into Eqs. (5) and Eqs. (6), now

yields the nonlinear boundary value problem

-_ W

2 __i

_ vr K c_ (%2 2_ 2- 2+--_ +_m w w
r

_!

c_ _2 2_ e$ = wv+__?_ ( +_r m v w

• 2

h = h (V 23_ - %WVrr w 2 v r 2

% -- h v- h
w v r r

f6

(8)

i --- 2% v+% w
v wr vr

_i

i ---i w
m

m

= f8

with boundary conditions

t--t 0

r (t0) = r 0

,w(t0) = w0

v(t0) = v0

m(t0) - m0

t= tf

r (tf) = rf

w(tf) = wf

v(tf) --vf

r(to) = _
ro multipliers.

The constant

r 0

scales the
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In addition to the boundary value system given by

Eqs. (8), we have to satisfy the equations

2

0 = (_ - _min )(_max - _) - _

9
=g

%v2) _ i00 = Cm (%2w + - %m - %a(_max + _min - 2_) = g (9)

ii
-g

For the discussion of the application of the Newton-

Raphson operator technique to the nonlinear system consist-

ing of Eqs. (8) and Eqs. (9), we rewrite these equations as

follows:

X = F(X, t) , te[t0, tf]

G(X, t) = 0 ,
(i0)

where

x :(x_,..., x_1

= , ..._ X 1 t i ----l, ...I 8

i ill 111g = g x , ..., x , t i- 9, i0, ii
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and

i
x (t) = r(t)

x4(t) = m(t) ,

x 7(t) = hv(t) ,

i0
x (t) -- ,

x 2(t) = w(t) , x3(t) = v(t) ,

5 6
x (t) = h (t) , x (t) = hw(t) ,r

8 9

x (t) = Am(t) , x (t) = _(t) ,

ii
x (t) -- ha(t) .

The algorithm now requires the solution of the sequence of

linear equations:

Xn÷ I = J(Xn, t)(Xn+ I - Xn ) + F(Xn, t) (lla)

0 = l(Xn, t)(Xn+ I - Xn) + G(X n, t) (lib)

n = 0, i, ...,

where J (X, t) is the matrix with elements J.. -
lJ

i = i, ..., 8, j = i, ..., ii; and I(X, t) is the matrix

with elements I.. -
13

i

_g

_x j '
i = 9, i0, ii, j = i, ..., ii.

At every iterate
9

n, x
n = x ..., xnn Xn'

rained from Eq. (llb). This relation is used to eliminate

9 i 8
x from Eq. (lla). The functions x (t), ..., x (t)
n n n

are

then computed from Eq. (lla), after which x 9 i0 (t),
n(t), x n

ii
x (t) are computed from Eq. (lib).
n

A description of the
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method of solution for the linear two-point boundary value

system, Eq. (lla), with the given end conditions is con-

tained in Ref. 2. The iteration proceeds until

P(Xn+ I, Xn) _< _, where

P(Xn+I, Xn) =

8

max
i=l te [to, tf ]

Ix i x i (t) I (12)n+l (t) - n '

and _ is a suitably small positive constant. The corre-

sponding iterate Xn+ I is accepted as a solution, and a

final check is made by integrating the nonlinear Eqs. (8)

with a complete set of initial conditions taken from the

final iterate, and with _(t) computed at every integration

step by

, when _] > 0
max

= { (13)

_min ' when _ < 0 ,

where

i

_=-( +h - hm w m

Equation (13) results from the Weierstrass condition, viz.,

maximizing H with respect to _.
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The data for the problem are normalized to obtain:

r0 = 1.000 rf = 1.525

w 0 = 0.000 wf = 0.000

v0

m 0

h

r 0

= 1.000

= i. 000

= 1.000

vf = 0.8098

_max = 0.07500

_min 0.000

K = 1.000 c = 1.872 .

This results in a time unit of 58.18 days. The final time

tf is chosen to be 3.816 units (222.0 days). The starting

vector X0(t ) is chosen as follows:

rf - r0i

x0(t ) = r 0(t) -- r0 +
tf

2
x 0(t) = w 0(t) = 0

x 0(t) = v 0(t) = r0(t)

!
2

4 t

x 0(t) = m 0(t) = i - 4t-_

5 (t) - 1.000
x0 (t) -=hr0

(14)
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0. 5200

-0. 5000

for re[O, ½if]

for te (½tf, tf]

7 _J"
x0(t)-= Vo(t) I

8 (t) --0
x 0 (t) = hm0

9 _max

x0(t) - _0 (t) - 2

i0

xo (t) = _0 (t) -

0.3000 , for re[0, ½tf]

0.000 , for te (½tf, tf]

I + cos 2__._th
tf /

(14)
(Cont.)

ii _t

x 0 (t) = h 0(t) = i0 sin tf ii .

To carry out the necessary computations, the time in-

terval [to , tf] is divided into 200 equal subintervals.

After the switching times (N = 0) have been located,

within the accuracy of the grid size, the time steps in the

neighborhood of the switching points are further subdivided

into i0 equal intervals, and the iterations continued with

this refined grid. In this manner, it is possible to locate

the switching points, or points of discontinuity of the con-

trol _(t), with greater precision.
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The sequence IX n} converges to an accuracy of 4 sig-

nificant figures in 51 total iterations. The total computer

time (IBM 7094) required is approximately 2 minutes. Fig-

ures i and 2 illustrate the convergence for the control var-

iables e (t) and _ (t) respectively, e*(t) and _ (t)

result from the final check of the nonlinear state and

Euler-Lagrange equations, Eqs. (8), with the switching

points obtained from Eq. (13).

With the same starting vector X0(t ), Eqs. (14), tra-

jectories have also been computed with final times

tf- 195.0, 201.0, 208.0, 215.0 days. In Fig. 3 the final

time tf is plotted against the ratio of final mass mf to

initial mass m 0.

CONCLUDING REMARKS

With the integration routine utilized for these sample

problems, the solutions seem to be limited to an accuracy

of 4 significant figures. We believe that through the use

of higher precision integration schemes, presently under in-

vestigation at Grumman, more accurate results can be ob-

rained.
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ABST CT ,}50 5In this report a step-Up procedure for the selection of significant

' estimation variables in a least squares problem is developed. Application

of this procedure to several examples is made, and a computer program

in AIDOL 58 compiler language for the Burroughs 220 computer is discussed.

394



APPROXIMATINGOPTIMALTRAJECTORIES:SELECTIONOFSIGNIFICANT
ESTIMATIONVARIABLESIN A LEASTSQUARESPROBLEM

TheAstrodynamic and GuidanceTheory Division of the Aero-Astro-
dynamicsLaboratory of the Marshall SpaceFlight Center is examining the
role of "large computers" as they.maybe exploited in the control and
guidance of missile performance. Under Contract No. NAS8-5365the Georgia

Institute of Technologyand its Rich Electronic ComputerCenter have been
studying such exploitation as it applies to the approximation of guidance
functions with multivariate functional models. Under this contract

attention so far has beenfocused on methodsto reduce the computational

and variable-selection problems in least squares models.

Background

The state vector, x(t) (describing the flight of a missile through

space) has the derivative _(t). These vectors along with a vector des-

criptive of the guidance function, u(t), satisfy equations of motion,

which may be expressed formally as

F[_(t), x(t), t_ u(t)] = 0

The missile is intended to satisfy certain mission requirements at some

future time, tc, and we may indicate these requirements in the equations

describing terminal conditions:

G[x(t c), _(t c), tc] = 0

Note that the functions F and G are themselves vectors. The guidance ........

problem may be expressed generally as that of choosing a "best" guidance

function u out of the class of possible guidance functions. In particular

we may wish to choose a function u in such a way as to minimize

tc

c(x,x_u,t)dt
o

395



In practical situations with real missiles we could not use the
exact optimumguidancefunction as a function of time becauseof measurement
errors and so on. The missile strays from the optimumpath into a situation
for which the chosenguidance function is no longer best. It then becomes
necessary to calculate a new optimumguidance function basedon newinitial
conditions. In short it is important to be able to synthesize the optimal

guidance function_ u, in terms of the state variables at each point in
the phase space.

Oneapproachto this synthesis which has beenproposed consists in
selecting a scatter of initial points (possibly organized in subregions
of the phase space); using a large-scale computerto determine the corre-

sponding values of the optimal guidance function; and then using some
approximation technique to estimate the guidance function as a function
of the state of the missile.

Various considerations, both practical and theoretical, suggest that
such an approximation be basedon the criterion of "least squares." Even_

however_if attention is restricted to this well-known method_difficulties
arise. In the first place fitting a function of several variables

becomesvery quickly a hugematrix inversion problem. In an earlier
study doneunder this contract, entitled: "Least SquaresEstimation of
Regression Coefficients in a Special Class of Polynomial Models," tech-

niques were described which reducedthe large inversion problem to a
sequenceof low-order inversions_ whenfitting balanced polynomials
to rectangular grids of data. While these techniques hold promise in
special circumstances, evidently they have a limited usefulness.

A secondmajor difficulty in least squares approximations arises in
deciding which class of functions or which subset of a very large class
of estimation variables will be used to approximate the unknownfunction.

Evidently 3 a methodwhich elects a relatively few highly efficient
estimation variables also serves to keep the matrix-inversion problem under

control, since that computation dependsdirectly on the numberof estima-
tion variables used.
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It happensthat there is a methodavailable by meansof which the
incorporation of estimation variables into the approximating functions
can be sequencedin what seemsusually to be an efficient manner. We

shall call this formal procedure for activating estimation variables
simply the step-up procedure. Theprocedure appears first to have been

used by R. J. Wherry (Annal. of Math. Stat., 1931). More recent dis-
cussions have appearedby H. E. Andersonand B. Fruchter (Psychometrika,

1960), and E. F. Schultz_ Jr. and J. F. Goggans (Bulletin of the _-

cultural Exp. Station_ Auburn Univ., 1961). Since examples can be

constructed to show that the step-up procedure is not always optimal,

the difficult problem of assessing its merit arises.

The primary concern of this report is to consider the merits of the

step-up procedur% to seek improvement in it and to investigate rules

to govern the stopping of the selection procedure.

While this and related problems are of considerable interest and

pertinence in the overall trajectory problem, they should not be consid-

ered overriding. Other approaches, where the goodness of approximation

is more directly related to the cost criterion or to the equations of

motion and where the mission fulfillment is more directly imposed, show

at least equal promise and are being considered for subsequent study.

Objectives

1. To conduct empirical investigation of the efficacy of using the

step-up procedure in the selection of a fixed number of estimation

variables out of a larger number in obtaining functional approximations

by the method of IS.

2. To seek modifications of the procedure for the purpose of

enhancing its efficiency.

3- To develop reasonable rules which will control the process of

stopping the estimation variables selection procedure and to study

empirically the sensitivity of the efficiency of the estimation to

variations in these rules.

4. To explore empirically the general applicability of low-degree

polynomial approximation (in the sense of least squares) to representative

functions of several variables.
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5- To develop an efficien% flexible and unified computerprogram

which_ in carrying out a least squaresapproximation_ at least has the
option of utilizing such selection procedures and stopping _ules as
have been developed.

Plan of Research

To accomplish the aims of this part of the study research was or-

ganized in four phases:

A. A review of the geometry_ linear algebra and statistics involved

in the method of least squares and the'step-up procedure. This phase

extended to include discussions of modifications to the step-up pro-

cedure and various criteria for stopping the selection process. Also

included were algorithms for computer programs.

B. Development of the structure of the empirical investigations.

In this phase decisions were reached on types of functions to be estimated,

data patterns_ size of data base_ specific form of the estimation variables

(as functions of independent variables)_ how data would be obtained and

reduced to the regression format with particular regard to the important

case of polynomial approximation.

C. Development of computer programs. In this phase algorithms devel-

oped in preceding phases were converted to programs_ with attention to

computational efficiency and cost.

D. A battery of examples with interpretations and_ if possibl%

conclusions. In this phase a few preliminary examples were designed

to test the efficiency of using the step-up procedure. Later 3 more

sophisticated examples were used to develop the other objectives cited

above.

Summary

A. Mathematical review (see the supporting study titled: "Selection

of Significant Estimation Variables in a Least Squares Problem:

Mathematical Review." )
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The well-known method of least squares (LS) is invoked to estimate

a presumed functional relationshi p between a dependent variable Y and

a set of independent variables Xl_ ..._Xv on the basis of a set of ob-

served points. According to the method a class of functions of the form_

ao+ aI ZI(Xl,...,X+ ...+ a Zp(XI,...,X),P

is considered for all real sets of coefficients. The Z's are specified

estimation variables depending on the independent X's. For any function

of the above class_ corresponding to an observed vector of X's_ one

Z_13
• of the estimation variables and a value

could compute values ..._z p

y_ a° + alz 1 + ... + apZ p_ which could be compared with the corre-

sponding observed value yw of the dependent variable Y. From this

specified class of functions the method of L$ selects one for which is

minimized the sum of squares of the deviations of the so-called predicted
^

values y_ from the observed values y. Such a function is called a

best estimate or best-fitting approximation (in the class) in the sense

of LS.

The choice of the functions to be used as the estimation variables_

Zl_ ..._Zp_ is open_ giving the method great" flexibility_ but also making

it vulnerably dependent on the choice, in the next section of this

summary some discussion is devoted to the choice of Z's and the reduction

of data to the form of observation vectors (Y_3Zwl_-.-_z ) on the_P

variables (Y_ZI_..._Z). This form is now assumed.

The least squares approachadmits of an accessible geometrical

interpretation. Supposing there are N observation vectors_ for each

estimation variable Z. consider the N observed values (adjusted to the
l

mean). These values constitute the i-th estimation vector z.. Similarly_
l

consider the mean adjusted dependent-variable vector y. The IS pro-

blem translates to finding that vector in the space spanned by the esti-

mation vectors which lies closest to the y vector. Or it may be inter-

preted as finding the projection of the y vector onto the estimation

space.
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The cosine of the angle between the y vector and its projection

in the estimation space is called the multiple correlation coefficien%

R. It is a measure of the efficiency of the estimat% attaining a

maximum of unity when the y vector coincides with the projection estimate.

The _ifference between the y vector and its projection onto the

estimation space is called the error vector. A pythagorean property

holds, expressing the square of the length of the y vector as the sum

of squares of the lengths of the estimate and the error. The estimate

itself can be resolved into orthogonal components_ and the same is

true of the error vector.

If only k out of the p available estimation vectors are to be

used to estimate y (corresponding to selecting k out of the p possible

estimation variables)_ a difficult problem of deciding which k to elect

arises_ since trying all combinations is ordinarily computationally

infeasible.

The step-up procedure is a practical_ though not always perfectly

optimal_ way to select k estimation vectors. It evolves naturally from

the geometric model described above. In this procedure the first

estimation vector is chosen by finding the one on which the y vector

has the longest projection (by the pythagorean property this leaves the

shortest error vector). In the next step for each of the remaining

vectors it is easy to determine the length of a component orthogonal

to the first vector chosen_ whose square added to the square of the

projection of y on the estimation space of these two vectors. Selected

is the vector having the longest such component. The procedure is then

repeated.

Since the y vector may lie in the plane of two vectors but possibly

closer to a third vector (not in the plane)_ the step-up procedure is

not always optimal_ for it would activate the third vector firs% then

one of the others_ but the combination would not be as efficient as

the first and second.

A modification of the procedure has been incorporated to allow for

the elimination of a vector from the active estimation set. It works in
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the following way. The error vector for the k selected variables is

compared with the error vector when one vector is deleted from the

active estimation set. The difference measures the net reduction of

error due to the one vector deleted. Computationally it is easy to

compare the lengths of these reductions. One may wish to eliminate a

variable which contributes little net reduction. A measure of the net

reductidn due to each estimation vector is provided by the cosine of

the dihedral angle .formed by the plane containing the y vector and

its projection in the reduced estimation space, on the one hand, and

the plane containing the two projections, on the other hand. This is

called the partial or net correlation coefficient between the dependent

variable y and the estimation variable in question.

It appears evident that the simple rule of selecting k of p estimation

vectors will not always be a good stopping rule. From the geometrical

description several other natural criteria emerge as possible stopping

rules whose use may be varied according to considerations of the particular

problem at hand. For example, if the multiple correlation coefficient

is "very high" the addition of other variables may seem unnecessary. Again,

even if R is not high, the modified step-up procedure may be making no

appreciable improvement in the estimate so that further addition of

variables to the active estimation set may be deemed useless. Also,

depending on the criteria for continuing to bring in new variables and

to eliminate old ones, some stopping rule should be available to guard

against cycling.

The most difficult choices for these decision rules are those

concerning whether to eliminat_ an active estimation vector and whether

adding one or several more will make any significant reduction in the

error vector. One might adopt the rule of introducing two vectors and

eliminating one, until a stopping rule stops the process. One might

eliminate the vector to which corresponds the lowest net correlation

coefficient, provided that the coefficient reaches a certain "low"

value. One might stop adding vectors if the last r add@d make an

average addition to R of less than some fixed amount. However, caution
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should be exercised in the fixing of criteria_ since certain combinations
of these rules increase the chancesof cycling.

Finally_ wehave considered elimination-stopping rule combinations
based of F statistics. Briefly_ an F statistic is a ratio of the average
of certain of the estimation componentsto the average of the error com-

ponents. In a statistical context_ if the estimation componentshave
on the average the sameleDgth as the error components,they are con-
sidered insignificant and are attributable to randome_ror. In short
these vectors are not considered of estimative significance. From
such a point of view there is someintuitive appeal in the decision rule:
Donot add if F <-i; do not drop if F _ i. However, the rationale
for using the F statistic rules is tenuous and_ such as it is, depends

on hypothesesof a statistical modelwhich are not always appropriate.
A fuller discussion of the statistical model is given in the supporting
study.

While the mathematical and statistical analysis suggested the fore-

going procedures and rules, it has also indicated considerable need for
the empirical tests subsequently made.

Themathematical analysis included a translation of the geometrical
steps described aboveinto algorithms capable of being converted to com-
puter programs. Thesewell-known algorithms also are developed in detail
in the supporting study with every effort madeto retain geometrical

interpretations in the development.

B. Structure of the Empirical Investigations
Thedata were organized in two main phases. Thepurpose of

empirical runs in the first phasewasprimarily to gain insight on the
efficiency of the step-up methodfor activating a subset of estimation
variables out of a large set of such variables. Theprincipal aim of
the runs in the secondphasewas to explore the relative merits of various
rules for stopping the step-up procedure of adding variables to the
active estimation set and rules for eliminating such variables. Auxiliary
purposes of empirical runs were to test and correct pertinent computer
programsand to obtain from diversified experience an idea of the general
validity of the IS approachas an approximation technique.
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As pointed out in the previous section, the generality of the method
of LS leaves considerable latitude in the selection of test cases. In

organizing test runs representing a variety of problem types someof
the factors on which decisions had to be reached included:

i. The type of function to be approximated, including its form,
the numberof variables and the selection of a representative
member.

2. The class of approximating functions, i.e., a selection of

the estimation variables Z.I = Zi(.XI' "" "'Xw)' i = 1,2,...,p,
where (XI,...,Xw) presumablyis in the domainof the function to
be approximated.

3. The number_extent and distribution of data points.
Admittedly decisions reachedduring the test construction concerning

these factors were somewhatarbitrary. Theywere made,however, with
awarenessof their significance.

Briefly, it was decided to construct data for a few selected functions

of three variables, using a rectangular grid of data and balanced poly-
nomials as approximating functions. In addition, a few runs were made
using active data, which were developed in certain statistical regression
analyses. Except for the actual data runs the data grids consisted of
500 to i000 points generated from evenly spacedvalues of the three
variables on the margins. Thus the undoubtedly important effects
(on goodnessof fit) of varying the distribution of data points or
varying the types of estimating functions were not studied here. In-
deed these factors were held moreor less constant in order not to

obscure the comparisonsof variable-selection proceudres.
Thesedecisions led to fairly general and easy algorithms for

generating data for a given test run and reducing them to the format of

IS input. Thus, for a given function F(XI, X2,X3) = Y, a given class of
balanced polynomials of the form
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_i £- Z3
=z a l 2 BXl X2 3 ,

and a given rectangular grid of points,

(Xltl' x2t 2'x]t 3 ),

observation vectors (y_, Zbl , zb2 , ... z ) were generated by the computer.' bp

Here yb is the value of Y at some (Xltl, X2t2,x3t3), and the estimation

variables Z. are the several.terms of the balanced polynomial of the form
i

_I £2 _3

Z i = X I X2 X3 ,

while z i is the value of Z i when (Xl, X2,X3) = (Xlt ,x2tp, x3t). The
observation vectors were then in a form to obtain L_ estimate_ of the

coefficients in the best-fitting balanced polynomial, or more specifically

to manipulate in a way aimed at activating the most significant estimative

terms of the balanced polynomial as described in the foregoing section.

Runs in the first phase were limted to estimating a polynomial (of

higher order than the approximating ones) and estimating a rational function,

while the approximating balanced polynomial class was restricted to be of

second degree in X I and X 2 and first degree X3, which restricted the number

p of estimation variables (terms of the polynomial) to 17 or less. The

test procedure for these runs was, for each k = 1,2,...,p-l, to determine

the efficiency (multiple correlation) of each of the (_) subsets of k

vectors and compare the optimal set with the set produced by the step-up

procedure. Computer time was a limiting factor in these tests.

Runs in the second phase included estimating an exponential function

and a few algebraic functions other than rational functions, and they in-

cluded two runs using actual statistical data. Some effort was made to

include poorly fitted functions as well as accurately fitted ones. Also,

the form of the approximating balanced polynomial was stepped up to develop

47 estimation variables. Usually, for each example, several runs were
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initiated in which were varied the policies of stopping the selection

procedure or of eliminating a variable.

Considered, but not developed in this study, was an experimental

design in which runs would be made for the various different combinations

of prescribed levels of the main factors thought to influence efficient

variable selection.

C. Development of Computer Programs (see the supporting study

titled, "Selection of Significant Estimation Variables in a

Least Squares Problem: Computer Programs.")

Corresponding to the two phases of the study mentioned in the

last section, two computer programs were developed. The purpose of the

first program was to compare in a few examples the subset of k estimation

vectors selected by the step-up procedure with the optimal subset of k.

This first phase of programming was begun before the Burroughs 5000 was

operational on contractor facilities and was programmed in the AI2#DL 58

compiler language for the Burroughs 220 computer. Because of core

memory limitations the program restricts the total number of estimation

vectors to twenty-five. It would be a simple matter to translate the

program to one for the more advanced computer. This has not yet been

done, primarily because the number of comparisons to be made even with

the restriction to 25 variables makes for an almost prohibitive amount

of computation time.

The program depends on using (i) rectangular grid data and (2)

a balanced polynomial as the general form of the approximating function.

One part of the progran_ using as input the specified values of each of

the variables and the degree of the balanced polynomial in each variable,

generates internally the grid of data points and computes for each such

point the value of each term of' the balanced polynomial. Thus the

estimation vectors are generated.

Also the program allows for a procedure to be inserted to incorpo-

rate the computation of the values of the function which is to be approx-

imated_ at each of the grid points of data. Thus the dependent variable

vector y is generated.
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As an intermediate calculation the program mean adjusts the above

•vectors and produces the intercorrelation matrix for all the vectors,

including the dependent variable vector. There will be LIL 2. ..L= p + 1

such vectors. These are restricted in number to 25.

In the next part of the program, for each k = 2, 3,..., p-l, each

one of the (Pk) subsets of k estimation vectors is manipulated to compare

the estimation efficiency (multiple correlation) of those subsets. For

each k the subset of k vectors which gives maximum efficiency is printed

as is also its corresponding multiple correlation coefficient.

In the final part of the program the estimation vectors are se-

lected in the order prescribed by the step-up procedure. At each stage

an index of the estimation vector introduced at that stage is printed

out_ as well as the multiple correlation coefficient obtained with the

set of vectors selected up to that stage.

In this program checks were instituted to restrain the incorporation

of vectors which were practically dependent on vectors already included

in the active estimation set. Also, considerable effort was made to

abbreviate the matrix-inversion type calculations in order to produce

only the multiple correlation, since the number of such calculations,

2p - p - 2, rapidly gets large.

The purpose of the second program, to a considerable extent

based on the assumption that the step-up procedure was reasonably

efficient, was to make available a fairly flexible program for esti-

mations based on the method of LS in which would be included at least

options for activating subsets of the esimation variables according to

the step-up procedure and other modified procedures, and also included

would be options which could be exercised to stop the selection. The

program was done for the Burroughs 5000 in the ALGOL 60 compiler lan-

guage.

As it now stands the program has several o_tions for obtaining the

basic matrix of the dot products of the adjusted vectors (which matrix

reduces to the intercorrelations matrix when the rows and columns are

appropriately standardized) •

tA
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(1) One of these options is the same as in the previous program,

except that the admissible order of the matrix has now been

increased to more than lO0. This option allows for the rapid

generation of data for experimental studies.

(2) Either the matrix of dot products or the intercorrelation

matrix may be read in directly. This allows further study_

especially of subset selection procedures, of previously

studied regression problems, least squares fittings_ and so

forth.

(3) Observation vectors may be directly read in. This will be

the way data will arise in most realistic problems, although

values of the estimation variables may require preliminary

transformation (e.g._ if the estimation variables are terms

in a balanced polynomial).

In this program_ once the basic matrix has been obtained, it is

retained in memory and can be used over and over, to facilitate compar-

isons when various procedures for selection, elimination, and stopping

are employed.

In case the intercorrelations matrix was not introduced directly

the program gives an option for computing and printing it and using it

in the remainder of the program.

In the main part of the program estimation vectors are introduced

in the 'priority order dictated by the step-up procedure. In addition_

however, the procedure carries options which allow for various rules

to be set to make possible the elimination of an estimation vector and

the stopping of the selection process.

At present there are two criteria either one of which may be used

to eliminate an estimation variable. One option automatically eliminates

an estimation variable after two have been included. Of course the one

deleted is the one of lowest net correlation with the dependent variable

(see Section A preceding). In the other option the pertinent F statistic

for the variable with smallest net correlation is computed (see Section A)
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and is tested against a preassigned threshold value. If it is below this

value, the variable is deleted. It is possible to prevent any such

eliminations by setting the threshold equal to zero.

Currently there are four criteria which can be used to stop

the process of adding estimation variables. The program effectively per-

mits bypassing any or all of these criteria. They are:

(i) Stop if the F ratio for the next single variable to be intro-

duced does not exceed that threshold value corresponding to a

preassigned significance level. The procedure stops after

that estimation variable has been added. This can be bypassed

by setting the threshold at zero.

(2) Stop if the current value of the multiple correlation coefficient

is sufficiently large. This can be bypassed by setting the

multiple correlation threshold at unity.

(3) Stop if the number of variables chosen reaches a preassigned

number. This can be bypassed by setting that number equal

to the total number available.

(4) Stop when the number of computational ite1_tions for adding

or eliminating a vector has exceeded a preassigned number.

It is noteworthy that the computational procedures for eliminating

and for adding a vector are the same_ once the vector has been earmarked.

It should also be mentioned that the same precautions as in the earlier

progr_£m were taken to prevent the introduction of almost linearly dependent

vectors.

In this program of course the output includes the LS regression co-

efficients of the selected estimation vectors, as well as indices of the

vectors selected 3 and the multiple correlation coefficients.

D. Test Runs on the Computer (see the supporting study titled,

"Selection of Significant Estimation Variables in a Least

Squares Problem: Empirial Computer Studies.")

As indicated in previous sections, these tests were broken roughly

into two phases. In a very limited way the preliminary set of tests was
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conducted to gain a measure of confidence in the step-up procedures as

a means for selecting an efficient subset of estimation variables in

in a least squares model. In the tests made a balanced polynomial of

relatively low order was selected, the terms of which provided the full

set of estimation variables. Estimation vectors, as well as a dependent-

variable vector, were generated from rectangular design data. Dependent-

variable data were computed as values of the function which was to be

approximated. As described previously, subsets of estimation vectors

selected by the step-up procedure were compared with the optimal set.

Primary difficulty in test runs arose from fact that the determination

of the actual optimal set of k vectors required comparisons of (Pk) sets

of vectors, where p was total number of estimation variables available.

Computational feasibility dictates that p be severely restricted.

Nevertheless, several preliminary runs were made where p was kept

to about ii, and in all cases less than 18. Several functions were approx-

imated. These in general represented the class of rational functions.

For one of the functions, which had a pole in the region of data points_

only a poor approximation was obtained. Otherwise, even with low-degree

polynomials, the multiple correlation coefficient was rather high.

In most of these tests the step-up procedure selected, at each

stage, the optimal set of variables. There was one example, however,

where the procedure did not select the optimal set of two vectors, al-

though the correct selection of a larger number of variables was achieved.

It is also noted that, when R became stable or nearly so, additional

variables introduced by the step-up procedure were not always optimal.

It is possible that this could_ have been the result of round-off error.

In general these experimental results indicated the step-up pro-

cedure is probably quite efficient, at least when a fair scatter of

points is available. It was noted that, even when the method failed,

the value of R was near optimal. The actual occurrence of failures,

even at early stages, suggested that some means for eliminating var-

iables would be desirable. Such techniques were introduced and used in

the second phase of testing.
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For the second set of test runs the Burroughs 5000 program was

used. As mentioned earlier, this program allows for a larger number of

estimation vectors to be handledj incorporates options of data input,

variable elimination and program stops, but does not make the comparisons

to determine a purely optimal subset of estimation variables. In most

of the examples studied in this phase several runs were made for each

example to throw light on the effects of changing the pattern of

variable elimination and stopping rules. Attention was focused on

varying the elimination criterion, the effects of varying other rules

being discernible from the print-out, with the principal basis for

elimination being an F statistic (see Section A of Summary). To observe

the effect of certain stopping rules (which can be set in the program

options) print-out includes for each "sweep" (where a variable is elimi-

nated or added to the estimation set) the number of sweeps up to that

stage, the number of estimation variables being used, an index of the last

one eliminated or added, the FI value of the F statistic for a variable

brought in or the F0 value of the F statistic corresponding to a variable

being eliminated (if it was below the criterion level), and the square R2

of the multiple correlation coefficient, as well as the reduced R2 which

diminishes if and only if the last variable introduced gave an FI value

less than unity.

The examples included: Approximating three non-polynomial functions,

with the available variables being the 48 terms of a balanced polynomial

cubic in XI and X2 and quadratic in X 3 and the 500 data points generated

from XI = 0.25(0.25)2.50, X 2 = 0.25(0.25)2.50 and X3 = 0.25(0.25)1.25;

approximating a dependent variable from actual data with available

variables constituting a balanced polynomial in four variables, where

the data are (as would usually be the case in practice) not in rectangular

design; and approximating a dependent variable from actual data where

the intercorrelation matrix of available estimation vectors was given,

the presumption being that these could be non-polynomial terms.

In the first group of examples the functions chosen to be approx-

imated were

FI(X1, X2, X 3) = exp (-Xl_2X 3)
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+ + -½
F2 = (X14 X23 + X32) I X 1 X2 - 2X31

F 3 =/X12 + X22 + X32

As in all examples the data were mean-adjusted. The functions F1 and F3,

especially F3_ were very closely a_proximated (in the range of data) by

the full set of 47 estimation vectors in the sense that R2 was near unity,

while R 2 for the case of F2 was near 0.9. For each example runs were

made with F0 set over a range of values from high to low. In the case

where F0 was set very low the tendency was to eliminate few or no variables

and thus to be very close to the simple step-up procedure.

The test runs for these examples show that different subsets of

estimation variables will be selected when the elimination (and stopping)

rules are varied. They provide concrete examples wherein the step-up

procedure is bettered by a procedure modified to include an elimination

criterion; where the opposite happens; where an F I stopping criterion of

1.O0 (on the last variable brought in) could stop the procedure which if

continued would later introduce variables significant at this same level.

These test runs suggest, but not markedly or universally, that the elimi-

nation criterion is @ffective in obtaining a higher R2 for the same number

of estimation variables; that a high criterion value is more effective for

variables selected early but not for those selected later; that the F I test

may stop the procedure too soon unless modified; that different problems

seem to need somewhat different rules; that while the set of variables

selected may vary considerably R2has a tendency to'be fairly stable for

different procedures.

The examples with actual data provided experience with data more of the

type expected in a realistic problem. In addition the first provided a

good example in which an F stopping rule based on a single variable (last

introduced) would have stopped the procedure too soon. The last example

illustrates another poin% viz. that out of 14 variable the last nine

variables tested together are not significant at 50% level while the 6th

one tested alone is significant at this level.
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It should be noted that in all the examples, in terms of the multiple
correlation coefficient, a few estimation variables usually accounted
for most of the value of R2.

It is recommendedthat further insight be obtained by examining the

summarydata for the various test runs, given in the supporting study refer-
red to above.

Conclusions and Recommendations

The step-up procedur% which first activates the one estimation

variable best in the sense of least squares_ activates next the one which

contributes the most to a further reduction in the sum of squares

and so forth_ is supported as an efficient and computationally feasible

procedure for selection priority-rated estimation variables in a least

squares approximation problem.

The nonoptimality of the procedure is manifest in practice. How-

ever, the evidence is strong that even in such case the results are near-

optimal, as measured by the multiple correlation coefficient_ R. The

empirical evidence indicates more reliability of the step-up procedure

in the activation of the earlier and presumably more significant variables

than in later variables. When a large number of estimation variables

is involved, the optimal value of R appears to be nearly reached by

several subsets of estimation vectors. Thus, although frequently in

these cases the set selected by the step-up procedure is not optimal,

it is very nearly so.

If it is important to restrict the number of estimation variables,

there appears to be a need for a means of eliminating variables previously

activated. The procedure of eliminating an active variable whose net

contribution to the reduction in the sum of least squares is (and

small) is practicable and frequently effective. Examples show, however,

that the elimination modification does not always improve on the simple

step-up procedure. Moreover, it carries the same cost as activating an
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estimation variable. No fixed elimination criterion is best for any
wide variety of problems. The experiments indicated an overall tendency
for a large elimination criterion to be moreeffective whenthe active
estimation subset is small and a small criterion to be more effective

whenthe numberof active estimation variables has becomesizable.
The use of rules to stop the activation of additional estimation

variables must often dependon such factors as available computer time

and rate of computer time utilization. A comprehensiveset of rules_
which maybe used in various combinations, includes stopping whenR
is sufficiently large, whenthe activation of additional variables does

not eontribute significantly to the estimation, whenthe numberof
variables reaches a preassigned numberor whenthe computational pro-
cedure begins to cycle. Examplesshowthat the secondof these can
occasionally stop the process too soon, so that the contribution of the

last several active variables, rather than just the last one, should
probably be tested. The speedwith which variables were eliminated or

introduced in the examplesindicates that large blocks of variables
could be introduced before makingany decision on which variables to
keep active.

The study showsthat at the current state of computer science it is
still infeasible to examineall combinations of subsets of estimation

variables to determine the optin_al subse% unless the total numberis
quite small, and thus that the needremains for sucha procedure as
the step-up procedure. The study has also given evidence of the fea-
sibility oT the rapid selection of efficient estimation variables even
from a set of several hundred, using a fairly sophisticated systemof
optional variable-elimination and stopping rules.

Finally, with reservation, it should be noted that in all the examples
there wasa markedrelative efficiency of a small set of active esti-
mation variables to the entire set of estimation variables available.

In view of the foregoing results the step-up procedure is recommended
as an effective meansfor selecting priority-rated estimation variables
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in a least squaresanalysis. The use of the modified procedure and the
various stopping rules is also recommendedwith the admonition that the

various settings ought insofar as possible to be adjusted to suit the

experience of workers familiar with the problem area under study.
Specifically, with regard to the context of estimating optimal

trajectories, i.e. with regard to the problem giving rise to this study,
it is recommendedthat further general analysis of the methoddes-

cribed herein, either theoretical or empirical, not be undertaken, but
that the methodand experience gained be"applied in a series of exper-

iments with actual trajectory data as soonas possible, where the exper-
ience of researchers in the field and the knowledgeof physics pertinent

to the problemwill be utilized to help delimit the class of approximating
functions.

Finally, using methodsof design of experiments and a limited class
of functions presumablypertinent to trajectory problems and including
somelive data, it maybe feasible to study the effects (on approximation
efficiency) of varying certain factors such as data distribution, type

of approximation, elimination criterion, and so on.
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES

IN A LEAST SQUARES PROBLEM: MATHEMATICAL REV]I_W

i. Introduction. The principle of least squares (LS) can be

formulated in the following terms. Presumed to exist is some sort of

functional dependence of one variable, Y, called the dependent variable,

on a vector, (Xl,...,Xw) , of w other variables, called independent

variables. Available is a number (say N) of observations_ i.e. values

of Y corresponding to values of the vector (Xl,...,Xw). Next is chosen a

class of admissible functions of the form,

alE I (XI'''"X-)_- + "'" + apZ(Xl'""X )'p_ m_ where the ZI,...Z are fixedP

functions of the X's and the parameters of the class are al, a2, ...,ap.

The functions Z. presumably are chosen to enhance the likelihood that
1

the unknown functional relationship (between Y and the X's) will be nearly

of the prescribed form. Each function of the class is linear in the

variables, ZI,...,Zp, which we shall call estimation variables; each

function is also linear in the parameters. In any case the basic idea

in the least squares approach is to approximate the unknown functional

relationship with one of the admissible functions. For any one of the

functions in the class, corresponding to each observation, (Xbl,...,xbw),

.......... Yb alzb I apZp,is the value of _lle f_L,__-v_, = *. ... _. wh_p......

:z ( ...,x)i Xbl; ; which is comparable with the value of Y (sayzbi

corresDonding to this same observation, (x i,...,x ). The sum of squares,

N

_=i _

is taken as a measure of the estimative value of the function

y = al lZ + ... + ap PZ. According to the principle of least squares, out
of the class of admissible functions

_J = {_'_ = alZl + ... + apZp}
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is chosenas an estimate of Y one function which minimizes the sumof

squares of deviations. Suchan estimate (we shall see that one does

exist) is written as 9 = _i biZi; we shall call such a function a best
estimate or best-fitting approximation (in the class) in the sense of

least squares. The sum of squares of deviations, _'___(__ y_)2 is

called the sum of least squares or the residual sum of squares due to

error. Theprocedure of obtaining a best estimate in the above sum

is frequently called a regression analysis, or more properly a linear

regression analysis. The b. are often called regression coefficients.m

The method of I_ was known and used by Gauss over 150 years ago.

He discovered that under certain conditions the method of least squares

in a sense yields an optimal estimate. This is the famous Gauss-Markov

theorem. Briefly, the principal hypothesis for this theorem is that

except for random deviations the observed values of Y are values corre-

sponding to one of the functions in the classy/. The random deviations

are assumed to be statistically uncorrelated, with a common variance and

mean zero. Under the additional hypothesis of normality of the distribution

of these deviations an elegant statistical theory of estimation and

hypothesis testing can be constructed. The statistical model is dis-

cussed briefly in Section 5 below.

The method of I_ is used widely in numerical analysis even when the

support of the Gauss-Markov theorem cannot honestly be invoked. In

many cases other methods perhaps are equally or more justifi&ble; but

often the method of LS has an intuitive appeal in that it seeks an

est_mnate which minimizes one obvious measure of error.

It is also possible to consider classes of admissible functions,

from which an estimate will be chosen on the basis of the LS principle_

which classes are nonlinear in the parameters. In many instances such

problems are resolved satisfactorily by iterative techniques. The

procedure of obtaining estimates of the parameters in such a case is

called a nonlinear regression analysis.
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Excellent accounts of the statistical linear regression model are
J

given in GRAYBILL_SCHEFFE_ and ZELEN. The method of LS is given space

in most _numerical analysis books_ and sometimes the nonlinear case is

discussed. E.g., see SCARBOROUGH. Nonlinear regression analysis is

treated from a statistical point of view in WILLIAMS.

In.applications of LS it is often the case that the number of

estimation variables_ for which values are computable from observations

on independent variables_ is very large. Certain recurring and nagging

questions arise, varying somewhat with the circumstances. If only k of

p variables can be usedl which k should be chosen? Does the use of

additional variables contribute significantly to increased efficiency of

estimate? The second of these questions is not mathematically mean-

ingful until the work "significantly" is defined. However, in the

context of a given problem_ the question is one that frequently must

be raised, given meaning and acted on.

There is an obvious answer to the first question raised above, viz.,

to determine by computation which of the (P) sets of estimation variables

yields the minimum sum of least squares from the data. Unfortunately

this straight-forward procedure is computationally infeasible. A

more tractable and completely reliable method of finding the optimal

set of k estimation variables remains an open problem. However_ at

leastas early as 1931_ WHERRY proposed a procedure for selecting a

reasonably efficient subset of estimation variables. This procedure we

call -- because it has become our habit -- simply the step-up procedure.

It consists in selecting first the one estimation variable best in the

sense of LS_ next the one which contributes the most to a further re-

duction in the sum of L$_ and so forth. In this way variables are added

until some rule stops the process. The procedure is computationally

very feasible and fast. However_ it is easy to show it is not always

optimal. The step-up procedure has recently been described without

much critical analysis in papers by ANDERSON and FRUCH_ER, and SCHULTZ

and GOGGANS.
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Theaims of the present paper are: To illuminate the methodof LS

in linear regression analysis with geometrical arguments, giving clear
interpretation of certain measuresof estimation efficiency; thus to lead
into a natural developmentof the step-up procedure where its weakness

as well as its intuitive appeal are exposed; to examinethe geometrical
structure for a procedure for elimination of a variable previously
selected, and thus mitigate the flaws in the step-up procedure; to
explore the statistical model for reasonable decision rules on whento
eliminate and whento keepadding variables; and finally to provide a
translation of the various geometrically conceived procedures to comput-
able algorithms.

2. Geometric formulation of the principle of least squares. The

b biZi ' out of the admissible classnotion of obtaining an estimate, _ = E 1

which minimizes the sum of squares of deviations, is one admitting

of accessible and correct geometrical descriptions. Such a formulation

is helpful in understanding the step-up procedures for selecting significant

estimation variables (to be described in the next section) and seems to

hold the only hope of devising techniques even more defensible than the

step-up procedure. We proceed now toward such a formulation.

Assumed available are the N observation vectors, (y_,z l,...,z p),

= 1,2,...,N, where z i = Zi (x i,...,x ), as indicated in the pre-

ceding section. Associated with each of the p estimation variables

Zi, i = 1,2, ...,p, is the vector, lying in the euclidean N-space _,

consisting of N values z i, _ = 1,2,...,N, observed on that variable.

We shall call these vectors estimation vectors; we write them_ zi(i = 1,2,...,p);

and for matrix manipulations they will be thought of as column vectors.

•he letter T to indicate matrix transpose, z'_l'_= (Zli, Z2i _...,ZNi).Hence, using

In this section the N x p matrix of these estimation vectors will be

denoted as z. Similarly, the symbol y represents the vector of the

observed values of the dependent variable Y. It will be assumed,

without any real loss of generality, that N > p and that the estimation

vectors are linearly independent. Thus the estimation vectors consitute

a basis of a p-dimensional vector space Vp, lying in EN.
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Consider now the sum of squares criterion. Writing the parameter

vector as a, this criterion is

N

g(a) -- Z (y_ -_)2 = dTd,
_=i

where d = y - _ is the vector of deviations. Note that _ = 7PI a.z lieszi

in the vector space Vp generated by the estimation vectors and that dTd

is the square of the (euclidean) distance between y and _. Since the

aim was to determine b such that g(b) = min _g(a)la_, the least squares

problem may be interpreted as finding a vector in the space spanned

by the estimation vectors which lies nearest the dependent-variable

vector y.

Geometrical intuition now supplies the correct solution to the least

squares problem; viz., the vector in Vp lying nearest y is the projection

of y onto Vp. Other important points are indicated by the geometry.
^ ^ 2 T

Writing y as the projection of y onto V , e = y - y, and e = e e, etc.,
P

y2 9 2 + e2; i.e., the squarepythagorean relations are indicated. E.g., =

of the length of the dependent-variable vector equals the sum of the

squares of the lengths of the best estimate vector and the least

squares residual error vector. _nis is often stated as, "_e ....l,O O_,..L

sum of squares equals the sum of squares due to regression (estimation)

plus the sum of squares due to error." Also, if _ = ra.z. is another

vector lying in Vp, if d = y - y, then d 2 2 x x= e + (9 __)2. Also, the

e vector will be orthogonal to Vp. Finally_ the angle between y and

its projection should be less than the angle between y and any other

vector in Vp. Thus cos e(y,9 ) > cos 0(y,_), where 0(u,v)means the angle

between vectors u and v.

In statistical terminology the cosine of the angle between two such

vectors is called a correlation coefficient. Recall that

cos e(u,v) = (u.v) Zu.v.= 3. 3.

7 2
u v 7u ._v.

1 1
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In the above instance cos e(y,_) = R is called the multiple correlation

coefficient between y and _. Note that this should be unity if y does

indeed lie in Vp, and should reduce progressively to zero when the esti-

mation space is less and less effective. Thus R provides a rather use-

ful and suggestive index of the efficiency of the estimation space. The
T

square of the length of the least squares residual error vector_ e e, is

another closely related measure of the efficiency of estimation.

The situation is represented schematically in the following diagram:

zI

Y

/

\
/ i

Z

P
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The foregoing geometrical discussion can be substantiated with a

detailed algebraic development• Such substantiation is a consequence

of the argument to _ollow_ but the primary purpose of the argument is

to make the geometrical entities explicit, to make essential quantities

computable and to set the stage for the next section.

The estimation space V is spanned by sets of orthogonal vectors
P

of unit length. Let z_, z_j..., z* be one such set. Since every vectorP

in % is a unique linear combination of the estimation vectors,

z_ qllZl + +.... qlpZp

Z @ _--p %iZl+ ...+%pZp

i.e., z* = zQ, where Q is a non-singular p x p matrix, and_ of course,

z = z*Q -1. Also, every vector in V has a unique representation either
P

as a linear combination of Zl,...,Zp or of z_,...,z_. If _ lies in %,

then there exists a unique vector a such that y = _P aiz i = za_ and there

exists a unique vector a* such that _ = z'a*. But z = z* Q-1 so that

a* = Q'la. T-hus there is a one-one correspondence between coefficient

vectors a for the z basis and vectors a* for the z* basis• In particular,

if b* is such that _ = z'b* is the one vector in V closest to y, then
^ P
y = zb, where b = Qb*.

With" these orthogonal vectors z* in mind an orthogonal trans-

formation is now imposed on the points in _ in such a way tha% in

the transformed space _', the z* become the unit vectors Ul, u2_ ...,u .
P

Such a transformation is accomplished with an N x N orthogonal matrix P

whose first p rows are the vectors z*T. It is easily seen that distances

and angles are preserved under such a transformation, so that the least

squares problem is invariant under the transformation. Note that the
I

image % of V is simply the linear combinations of the unit vectors_P
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Ul,...,u p. Let y' = Py, and let y = z'a* lie in Vp, so that y'= a*mui.

Then the squareof the error vector is

ui)T _p ,2, , _ , _ a*)2 + +ly_ •d_d d'Td= (y'-m_ (Y -m_i) --ZI(Yi i

Evidently the projection of y' onto V' ought to be the vector whose first
P

p components are those of y' and whose remaining components are zero.

Thus the a*. which produce the combination of u. (i = 1,2, ...,p) con-
1 1

stituting the projection of y' on V'p are Yi" In short, b* = Yi' i = 1,2,...,p.

That this is correct algebraically can be seen in the preceding equation,

where it is obvious that these are the values of a*. which minimize the
1

square of the error vector. Write 9' = --_[b_i = [yL,...,yp,O,...,O] T.

, y,]T _ e' so that
Note that the residual error vector [0'''"O'Y_+I,...,= N -

e' and 9' are orthogonal. Note also that _P (Yi - a_ )2 = (9' - 5') 2 and

hence, from the foregoing equation, that

d,2= (9'-_')2 = ,2+ (y,__,)2 (_,__,)2 + e .

Having seen now that, relative to an orthogonal basis of V,

b* = z*Ty (which follows from the fact that b# = y_ and y_ = z_y for
1 1 1

i = 1,2,...,p), it is now desirable to obtain _ and eTe in terms of the

original estimation vectors and the dependent variable vector. But

z.Ty TzTy.y = z'b* = zb, where b = Qb* = Q = QQ Now

Q-I T = Q-I T = T= Q-I z*Tz*Q "l (z'Q-l) T (z*Q "l) = z z.

T T h-i
Thus, writing h = z z and g = z y, in terms of original data, b = g.

Also

2 z_ ,2 T z.zSy TzQQTz_(z_y)% .e = Yi = b*2 = y = y = = _bigi
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Thus computationally the problem is one of solving the system of

equations hb = g. In the succeeding discussion it will be important to

remember the following principle which summarizes much of the preceding

development and unifies the geometry and algebra of the least squares

problem: Given a set of k linearly independent vectors Zl,...,z k in

an euclidean space and a (k+l)-st vector w, if h = zTz where z = (Zl,...,Zk)

and v = zTw; then the solution x of the equations hx = v is such that

zx is the projection of w onto the space generated by the zi, and the

solution effectively resolves the w vector into its projection zx

and a component, e = w - zx, orthogonal to the projection.

3- The Step-up Procedure. In this section emphasis is shifted

to the selection of a subset of (say) k estimation vectors out of a total

number of (say) p. An optimal set of k_ by definition_ will be that

set of k corresponding to which the length of the error vector is least

(or equivalently the multiple correlation coefficient R is most). The

plausibility of the step-up procedur% as well as its deficiencies, will

be seen from the geometrical development. Computational feasibility

and procedures will be evident from the corresponding algebra.

For the moment we suppose that k-1 vectors have been chosen and

that our purpose is to add another one from the p-(k-1) remaining. We

shall refer to estimation vectors selected as being in the active esti-

matio_____nspaceor as being active.

With regard to a least square problem involving y and the k-1

active estimation vectors (which of course are a basis for a vector

space Vk_ 1 of dimensionality k-l) everything in the preceding section is

directly applicable. This succession of problems with 1,2,...,k_...jp

vectors in the active estimation space is sometimes called the succession

of the 1st, 2ud,..._ kth_..._ pth fittinss. We shall frequently use a

superscript to indicate the fitting_ or dimension of the active estimation

space. This notation does not specify which of the vectors are in the

active estimation space_ but we shall tacitly assume they have been re-

labeled so that the active estimation vectors are now Zl_ z2,...,Zk_ 1.

423



According to the preceding section 9(k-l) = 7.i=Ik-I bi(k-1) z. = z(k-l) b (k-l)
1

where b (k-l) is the solution to the system of equations_ h(k'l) b (k-l) = g(k-l)

with h (k-l) (k-l) T (k-l) g(k-l) (k-l) T z(k-l)
= z z _ = z y_ and = (Zl,..._Zk_l).

Recall that _(k-l) is the projection of y onto Vk_ I and that the residual

error vector e(k-l) has length whose square is (b(k-1).g(k'l)).

Suppose next that the kth vector to become active has been selected•

Consider the system of equations h(k-l) x (k-l) = v (k-l) where v (k-1)-

z(k-1)T zk. Recall that k-1 (k-l)El= 1 x.1 z.l is the projection of zk onto

, = _ Ek-i (k-l) is the component of zk lying orthogonalVk_l_ and zk zk i=l Xl zi

! ___ I Z Ito the space spanned by the Zl_.•.,Zk_ I. The vectors zI Zl_Z2_..., k_..._

thus defined are a particular determination of Gram-Schmidt orthogonal

vectors• In matrix form the matrix of the first k of these Gram-Schmidt

vectors is

z '(k) = z (k) Q,(k) where Q,(k)

m

(1) (2)
I - xI - xI

(2)
0 i - x2

• 0 1

0 0 •,.

I

... - xl(k-1)

-.• •

,,o

0 1

from the equation above•

Normalized Gram-Schmidt vectors are obtained when the columns of

Q,(k) are divided by (z] - z') _ Thus orthonormal Gram-Schmidt vectors are
1 i- "
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z.(k) = z(k) Q(k),

where Q(k) is upper triangular with the reciprocals of the lengths of

the Gram-Schmidt vectors in the diagonal.

Recapitulating at this point, we halve an orthonormal basis for the

active estimation space in terms of the Gram-Schmldt orthogonal vectors,

where the last Gram-Schmidt vector was the component of the last esti-

mation vector selected orthogonal to the space of the others.

It is interesting to note that the lengths of the Gram-Schmidt

' are readily available from the original estimation vectors.vectors zk

In fact, using the basis z_,...,z_ derived from the Gram-Schmidt vectors

as the orthonormal basis of the previous section, it follows from the

results of that section that z*(k) = z(k) Q(k) where Q(k) is triangular

l tk_-lj
with (z_ • z_) "2 -- qkk' and that h _ = Q_kjf_ Q(k) T, or writing

a(k)= hCk)i, (k)= 2 = -I.

NOW, given orthonormal vectors, z_,...,Zk.l* , z_, from the preceding

_i-1 2section the square of the projection of y onto Vk_ 1 was =l bi* where

b.(k-l) __ z.(k-1) T y;

while the square of the projection onto Vk is _i=l .2b i , where

b.(k) = z.(k)Ty.

Thus, b_ 2 is the increase in the square of the projection vector obtained

by activating the estimation vector zk (whose component orthogonal to

Vk_ 1 is z_); or, equivalently, b_ 2 is the reduction in the square of the

residual error vector obtained by activating zk.
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Now the principle of the step-up procedure becomes clear. Given the

problem of augmenting by one vector an active estimation set of k-l,

the answer is to choose that one for which the new projection of y in Vk

has the largest component orthogonal to the old projection in Vk.1; i.e.,

choose zk so that relative to the augmented Gram-Schmidt orthonormal

system, z_, ... z* z* b.2 is maximum.' k-l' k' k

Again, it is important to be able to examine what values b_ 2 could

have for the various possible vectors which could be chosen as Zkj and

to do this easily in terms of the original vectors. But recall that

z.(k) = z(k) Q(k), Q(k) b.(k) = b(k) = h(k) -I g(k),

so that the triangularity of Q(k) implies that

bk( )2
bk(k),or 2 --

akk

It is worth noting that the residual error vector can be con-

sidered as a final Gram-Schmidt vector, since e(k) = y - 9(k) where

_(k) is the projection of y onto V k. But we have seen that the reciprocal

of the square of the kth Gram-Schmidt vector is the last diagonal element

of the inverse of h (k). Thus, if the h (k) matrix being used is augmented

with an additional column z (k)T y and a symmetric row, corresponding to

the dependent-variable vector y, then the last diagonal element of the

inverse of this augmented matrix will be the reciprocal of the sum of least

squares.
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A computation synthesis of the procedure can be envisaged as a

sequence of _aussianl elimination tableaux# where starting with

hll """ hlp gl

hpl "'" hpp gp

gl %  y:a
after k-1 stages we have

1 0 ... 0

O • • •

• • • 0

• e •

0 ... 0 1

O ••o •e• O

0

0

'l

1 0 ... 0

0 ". ". "

• • 0

0 ... 0 1

0 ....... 0

••0

•.•

m

Note that

• 0o 0

hlk (k'l)

-i_ k

h(k-l)
l,k """

-l;k """

kLl) ...

bl(k'l)

b(k-1)
k-1

, (k-l) .
'k

:

G(k-l) ...

is the solution of h (k-l) x

all(k-l) (k-l)•.. al, k_ I

a(k-l) a(k-l)
k-l, i """ k-l, k-i

O ••• 0

O 00o O

!0... 0

o :

• " 0

0 ...0 1

0o0 0

(k-l) = v(k-l) from

0

0
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which the kth Gram-Schmidt vector is obtainable. Note that

m

bz(k-l)

b'(k-l)
k-i

B

the solution of h,k.l,(_ b,k-l,(_ = g_k-l,.f_ Note that if zk is to be the

next vector activated, then to obtain solutions to h (k) x (k) = v(k)

and h (k) b (k) g(k) and to obtain a (k) h (k)-I= , = , requires only to

operate on the above matrix with elementary (row) transformations so as

to reduce the kth column to the unit vector uk. This will produce

is

b(k) - gk (k'l)
k - (k-l) and akk(k)

i

= (k-l)

Thusbk*2= gk(k'll2/ k(k'l)

From the last equation it is east to see that, to find the _ecotr
.2 (k-l) (k-l)

yielding maximum b__ , one need only examine the ratios (g. ) h..
J / jj

for J = k, k+l,...,p.

Note finally that, after k vectors have been chosen, the last diagonal

element of the inverse of the augmented matrix would be 1/G _k). Hence

G (k) = e (k)2, the sum of squares of residual error.

Attention is called to the obvious fact that the step-up procedure of

activating estimation vectors in the order of the further reduction made

to sum of squares of error is not necessarily optimal in selecting say k

vectors out of p. E.g. the y vector could be practically in the the space

of two vectors, zI and z2, but lying closer to a third z3 (not in the space)

than to either of the given two. Thus the first vector selected would be

vector z3. Then regardless of which one was selected next, the pair chosen

would be inferior to Zl, z2.

One other word of caution is in order. The criterion for activating

the next estimation vector is a maximum ratio. The denominator of this

ratio is the square of the length of the component of the new vector in
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the direction orthogonal to the then current estimation space. Of course,

if some of the remaining vectors lie in the currently active estimation

space (i.e., they are linearly dependent on vectors already chosen)

they should not be considered as candidates. Because of roundoff errors

such dependency must be defined approximately. Note that an almost

dependent vector will produce a small orthogonal component which will tend

to produce a large criterion ratio (which may be primarily an accident

of roundoff error). To avoid spurious selections caused in this way the

criterion should be compared only for those vectors whose orthogonal

component exceeds a minimum value. What minimum value ought to be

chosen is at this time a matter for conjecture.

4. Criterion for eliminatin 6 insi6nificant variables. From the

discussion in the preceding section it evidently may happen that, in trying

to activate an efficient set of k estimation vectors, the step-up pro-

cedure will select at one stage a vector which later on would be more

efficiently eliminated. So far no procedure for deactivating any of the

active estimation vectors has been incorporated. However, the algebraic

technique for eliminating any designated active estimation vector and

obtaining the regression analysis for the reduced set is well-kno_n.

It is a question of deciding whether to eliminate one and if so which

one to eliminate. The purpose of this section is to provide a geometri-

cally appealing and obvious ansSer to the second aspect of this question.

Criteria for deciding whether to eliminate a variable will be discussed

in the next section.

Therefore we suppose k estimation vectors have been activated and

the corresponding analysis laid out, say in the manner of the sequence

of gaussian tableaux referred to in the last section, and we suppose the

decision has been made to eliminate one of the vectors. The question is :

Which one shall we eliminate? _ix attention on one of the active zi,
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say for definiteness the last one, zk. Now the projection _(k) of y

onto Vk can be resolved into its projection _(k-1) onto Vk_l, the space

spanned by Zl,...,Zk_l, and a component orthogonal to 9 (k-l). The proq

jection _(k-1) of _(k) onto Vk_ 1 is indeed the same as the direct

projection of y onto Vk_l, so that the orthogonal component mentioned

above in the resolution of _(k) is the net effect of the active vector

zk in the estimation of y with _(k). Still keeping attention to Zk,

we have already seen that the square of the length of this orthogonal

.2 .

component is bk , where in fact bk is a component in the direction

of the kth Gram-Schmidt vector generated according to the order in which

the z. were selected. Also,
i

where, it will be recalled,

h(J)b(J)= g(J)

for any J = 1,2,...,p; with h(j) = z(j)T z (j), z(J) = (Zl,...,zj),

a(J)= h(J)-1.

Recall also the pythagorean relation for each J = 1,2, ...,p,

2 (j)2 e(j)2(y.y) = y - 9 + ,

where
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with y' = Py, the imageof y under orthogonal traza_ormation_ Thus,

rememberingthat bi = y_

2 (k_l)2 .2 e(k)2y =_ +b k +

.2
Evidently bk can be interpreted as the net reduction in the square

of the error vector obtained by activating Zk, or, equally as well,

as the net increment (provided by activating Zk) in the square of the

active estimate.

Imagine nowthat the gaussian elimination has proceededto the point

of obtaining a solution to h(k) b(k) = g(k)with a(k) = h(k)'l"

0

. ••

O .,• 0

• 0

0 1

O ,%, O

O ••- O

O ••• O

h(k) _ .(k)
1,k+i "'" nlp

_(k) h_)

bl(k)

b(k)
J

b (k)
K

(_)
%

Q(k)

(k)
all ooo

_(_).
• jj •

O ••• O

1

• o• 0

O••. 0

O • 0

0 ... Ol

••• O

0

0

0

But now suppose j < k and the order in which zj and zk have been introduced
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is reversed. Imagine re-scheduling the calculations in the gaussian

elimination for this revision. In the tableaux this would be accomplished

if in the initial tableau the jth and kth rows were interchanged and the

jth and kth'columns (to restore the initial unit matrix on the right

the (p+l+j)-thand the _+l+k)-th columnswould also have to be inter-

changed), and thereafter repeating the operations which produced the

kth tableau laid out above. The solution vector b(k) in this case would

be the sameas before except that the order of b.(k) and bk(k) would be
D

interchanged. Moreover, the inverse matrix would be the same except

thatthe jth and kth rows and the jth and kth columns would be switched,

putting ajj(k).. in the (k,k)-position and akk (k) in the (j,j)-position.

bj(k)2/ajj (k) .2Note now that plays the role of b k _ and hence the quantity

(k) 21 (k)

bj /ajj is the net reduction in the square of the error vector due

to the z. vector.
J

Now it is clear which of the k active estimation vectors should be

eliminated, viz. that zj (j _ k) for which bj(k)2/ajj (k) is minimum.

Observe that these ratios are computable from the kth gaussian _ableau

set out above without any re-computations.

Having decided which estimation vector is to be eliminated from

the active set of k, the procedure for making the elimination and obtaining

the regression analysis for the reduced set of k-1 active estimation

vectors is as follows. According to the foregoing remarks no generatlity

will be lost if we assume that the vector to be eliminated is zk. But

recall that to add zk to the active set, Zl,... Zk_l, and to obtain the

regression analysis for the augmented set it was only necessary to perform
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on the (k-l)-st tableau those elementary row transformations which reduce

the kth column to the unit vector uk. Therefore_ to eliminate zk it

is only necessary to undo these calculations. It is not hard to verify

that the reversing calculations are those elementary row transformation

(on the kth tableau) which reduce the kth column of the inverse a(k) back

to uk.

It is of course only a notational convenience to assume that the

estimation vectors activated are the first k of the p listed in the

tableaux. The swapping of rows and columns_ while tidying up the

written portrayal of the tableaux, etc._ is completely unnecessary for

computer handling of the problem.

Finally we shall mention that the rule described above for deciding

which vector to eliminate is equivalent to that of eliminating the active

vector that has the smallest _artial correlation with the dependent

variable vector. The partial correlation coefficient between zk

(say) and y is the cosine of the _ig±_......b_bw_n...... e(k-1) and 3 (k)-_(k-1).

From the sketch below it is clear that this correlation decreases

as the length II_ (k) - _(k-l)II = ]bkl decreases:
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Y /

From the definition of cosine between e (k) and _(k) _ _(k-l) it is easy

to show that

_.2 _(k_l)_(k)2 ,

u u kbk , = a(k-1)b_2=
c°s 2 E_(e(k-1) _r(k) _ _(k-l))= (e (k-l) e(k-l)) (k)'

• akk

5. Decision rules: the statistical model• In the last section

the question answered was which active estimation variable ought to be

eliminated once the decision had been made to eliminate one. The

question of constructing decision rules to tell when to eliminate a

variable was left for this section. Defining a sweep or iteration as

a step in which either an inactive estimation vector is activated or

an active one is deactivated; an obvious type of decision rule is the
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following: Activate two vectors according to the step-up procedure, then
eliminate one by the methoddescribed in the preceding section, and
continue operating under this rule until somestopping rule (see below)
stops the entire procedure. It is conceivable that sucha rule would

have utility if it is important in the ultimate application to have no

more than k vectors while the cost of the extra sweepsis relatively
unimportant.

Of course if of k active estimation vectors one has a partial
correlation with the dependentvariable vector of practically zero_
it would seemwise to eliminate it. This suggestsanother quite arbi-
trary type of elimination rule: Of the k currently active estimation
vectors eliminate the one of lowest partial correlation with y if said
partial correlation is less than somelevel _(k), possibly a function
of k.

Another decision problem must be dealt with, viz. that of constructing
a stopping rule to stop the step-up procedure (with or without modification
to allow for deletions). Here again, certain obvious but rather arbi-

trary rules cometo mind. E.g._ stop whenk vectors have been activated
°°

(actually this was the somewhat naive rule used to motivate the section

om the step-_!p procedure). It seems clear that, by itself_ this is not

a good rule_ since in a particular example a satisfactory estimate may

be attainable with far fewer than k vectors (i.e. the multiple correlation

coefficient may be already very near one with fewer vectors or simply

may not be improved "significantly" to warrant the inclusion of more).

We take the position at the present time of recommending a fairly

comprehensive battery of stopping rules_ any combination of which might

be used_ with a variety of sensitivity settings possible. Intuition

suggests that appropriate settings will vary with the type of problem_

the usage requirements and the burden of cost in time and money. Per-

haps a battery of stopping rules should at least make provision for

stopping when a fixed number of estimation vectors have been activated_

435



whenthe estimate is of sufficiently high accuracy (multiple correlation
sufficiently near one)_ whenthe numberof sweepsexceedsa certain
number(this acts as a safeguard against a cyclic pattern of activation

and elimination of vectors), and whenthe last r (say) vectors activ-
ated have not produced a "significant" changein the estimate.

Again the word, "significant"_ requires specific interpretation

before the rule can be operational. Onemoduso_erandi might be: Stop

the procedure if the increase in the multiple correlation coefficient

R, produced by adding the last r active estimation vectors_ was less

than _(r,k).

Both in the question of whether to deactivate an active estimation

vector and in the question of when to stop activating estimation vectors

the notion of significant effect arises. This suggests the possibility

of resorting to a statistical model where the techniques of testing hy-

potheses might be invoked as a basis for decisions on whether to eliminate

a variable or whether to stop the activation process.

In the remainder of this section we shall sketch the outline of a

statistical model perhaps sufficiently to indicate the attractiveness of

such a decision mechanism as well as to indicate some of the limitations

of such a model.

Very briefly the model develops a statistic_ or function of the

observed active estimation vectors and the dependent variable vector_

called an F statistic which is the decision-making instrument--large

F means significance of the effects being tested and small F means

nonsignificance. Under the hypothesis of the statistical model, and

under the additional hypothesis that the effects of the estimation

vectors being tested are only "noise" effects or effects introduced by

virtue of random fluctuations, the F statistic is expected to have a

value of about unity.

Actually_ the F statistic is a ratio of the average of the effects

of the vectors being tested to the average of some random error effects.

In the terminology developed in previous sections suppose that
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Zk_r+l,...,z k are active estimation vectors whosecombinedeffect is

being tested. Recall that _(k) is the projection of y on the space

spannedby Zl,...,Zk; and that _(k-r) is the projection of _(k) as

well as the projection of y onto the subspacespannedby Zl_...,Zk_ r.

f yl
I

e(k) ke(k_r) /

In the F ratio the average of the effects of the r vectors Zk_r+l,...,z k

1 _(k) _(k-r);is measured as - times the square of the length of the vector,
r

1

while the average of error components is measured as N_--q-_ times the
t _ t _

square of the so-called error vector, e<k) (recall that e[k) lies in a

space of N-k dimensions orthogonal to the space generated by Zl,...,z k

in which 9(k) . 9(k-r) lies). Obviously, values of the F statistic less

than one would not tend to support significant effects of Zk_r+l_...,Zk,

while values greater than one presumably would. With the normal law of
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errors assumedin the statistical model and under the hypothesis that

these supposedeffects of the last r vectors are noise effects_ it turns

out that the chancesare approximately even that F should exceedthe

critical value of unity. If the critical value is increased the pro-

bability that the F statistic will exceed it diminishes rapidly. These

probabilities are tabulated for various critical values and various

de_rees of freedom (r and N-k in our case). One may establish a decision

rule to reject the hypothesis of no systematic effect (from the estimation

vectors being tested) if the value of the F statistic observed is improb-

ably larger than one.

The decision rule is not complete until _specific numbers or functions

are attached to the words "improbably larger. " Undoubtedly a judicious

choice depends on several factors involved in the balancing of cost and

return in a particular problem. This is one of the open questions we

have tried to study experimentally in anot_er supporting study.

To complete the exposition some description of the characteristics

of the assumed statistical model is warranted_ although as we have men-

tioned there are recent excellent accounts of this model.

In the statistical linear regression model it is assumed tha%

except for random variations_ Y is a linear function of the Z.. Thus
i

P

Yu =i=l_ _i z_i + _ _ _ = I_2_..._N,

where ¢ are random errors. In addition it is usually assumed that the

2
c are uncorrelated with a common variance _ and a mean of zero. The

_i are parameters which may be estimated in an optimal way under the
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circumstances. In fact_ the best linear unbiased estimate of a linear

P

combination of the _i' say _ = E _i Zi_ best in the sense of smallest
i=l

A

varianc% is Y = E b i Zi, where the b i are precisely those which pro-

duce the least squares estimate. This is the Gauss-Markov theorem.

It implies that_ if the true functional relationship is except for a

random error Y = _ = E _i Zi_ then_ faced with not knowing the exact

values of the B_ the next best thing is to use the estimation function

A

Y = Y = Yl.b. Z..
1 1

To see the truth of this theorem we shall need to use the ex_ected

value or mean value o_erator E operating on a random variable or

vector or matrix_ with the expected value of a matrix of random variables

being the matrix of expected values. From this definition it follows

directly that E A X B = A(EX)B, if X is a random matrix and A and B are

nonrandom matrices.

T
Now under the statistical model above, y = z_ + _ where y =

(yl,...,y_), z = (Zl,...,Zp) , z_ = (Zli,...,ZNi), _T (B1,...,Bp),

T = ('el,..., _N ), with e (and hence y) being random vectors. AccordingC

to the assumptions_ E¢ = 0 so that Ey = z_; and the e are uncorrelated
b

2 T 2
with a cow,non variance _ _ so that Eee = _ I_ I being an identity

matrix. Note that the z. vectors are nonrandom.
I

First we show that Eb = _ i.e., that the b i are unbiased estimates

of the corresponding _i" In fact

439



--_h-lg= h-_g :h-<EzTy: _-lzT_ :

h-lzTz_ : h-lh_ : I_ : _.

Next we exhibit the covariance matrix of the estimates b:

E(b -_) (b- m) T _(b - _) (b- _)_=

E(h-lg_ m-l_) (h-lg_ m-lg)T :

h-_(g - _g) (g-_g)Th-i

since h and h -I are symmetric. Now

_(g - Eg)(g - Eg)T = E(zTy- m_y) (Ty _ _zTy)T=

z_(y - _) (Y - Ey)Tz: zTm_Tz _ zT_2Zz: _%_.

Henc% substituting above_

Now consider _ = Zb. Z. = zTb as an estimate of 7] = E _i Z. = zT_.
i i l

Observe that

z% (zTh-lzT)y aT----- = _-- y_

T zTh-lz T ^where a : . This is what is meant by saying that Y is a linear

estimate of 9; i.e. it is a linear combination of the observed values of

the random dependent variable Y.

A

Also E_ = EzTb = zTEb : zT_ : I]. Hence Y is an unbiased estimate of I].
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Finally we must show that the variance of Y is less than that of any

other linear unbiased estimate of _. Suppose _ to be another linear

unbiased estimate of _, so that Y =clY I + + cNY N CT EcTy.... y, and = _.

Now consider vectors in euclidean N-space. Note that a = z(h-lz), a

• . We
vector lying in the estimation space spanned by the vectors Zl, ..,Zp

shall see that the vector a is the projection of c onto the space spanned

by Zl_..._Zp. Since EaTy = EcTy, then 0 = E(c-a)% = (c-a)TEy = (c-a)Tz_.

This identity can hold only if (c-a)Tz = O. But this implies that

(c-a)%= (c-a)T _(h-lz): o.

Hence a and c-a are orthogonal_ and the pythagorean relation,

holds.

The variance of Y is

2 2+c : a (c-a)2,

E(V - EV)2 : E(V- EV) (Y - EV)T

= E(cTy - EcTy) (cTy - EcTy) T

= cTE(y - Ey) (y - Ey)Tc = cTE¢¢Tc

= o c c = q aTa + (c - a)T (c - a > o .

^ 2T
But of course by the same reasoning the variance of Y is q a a.

shows that _ is of minimum variance.

This

To arrive at the F-statistic test for our decision rule in eliminating

an estimation vector_ or in stopping the activation of estimation vectors,

additional assumptions are needed. Suppose that k of the estimation vectors,
k •

Zl,...z k has been activated, and it happens that Y = 7 8i Z.I + e_ in short
i=l

that the statistical model is valid with these k variables_ so that
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z(k)B(k) T .-.,7. z + _ or y : + % when _ : (_l; . Suppose_
YZ = i:l _I

in addition to the conditions that Ec = 0 and Ee¢ T = o21; we require that

the e be normally distributed. Now suppose we wish to test the hypothesis

(Ho) that the last r parameters _k-r+l'''" _k are in fact all zero.

(Accepting this hypothesis implies that the activation of the last r estima-

tion variables adds nothing to the estimate available with the first k-r

var iab le s. )

The basic idea of such a test is to divide the sample space_ i.e.

the space of possible values of the vector y, into a rejection region R

and its complement; an acceptance region; the ultimate decision rule

being to reject H in case the observed value of y falls in R. Naturally_
o

in order to make the test a discriminating or powerful one the points

in the rejection region ought to be chosen roughly so as to maximize the

probability of rejection when H is not true_ while at the same time the
o

probability of rejection when H is true should be kept below a certain
o

bound. Such a test is approximately obtained by putting in R those points

with highest "trade-off ratio_ " this ratio being essentially the ratio

of the maximum of the probability density functions (pdf) over the entire

family of pdf's defined by the admissible values of the parameters_ to

the maximum of the pdf's over the subfamily where the hypothesis H holds.
o

This ratio is _alled the likelihood ratio k. Such points of highest

likelihood ratio are placed in R until the set is as large as it can be

and still have the desired bound or the probability of rejection when H
o

is true.
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The optimal character of the likelihood ratio test for the problem

at hand is given excellent treatment in SCHEFF_.

Let _ stand for the parameter space of admissible values of the

parameters. In our case

, I-_<_ <=, _ >o

Let w stand for the subset of Q where H
o

w = {_(k), 21_ _ < _(k-r)< %#k-r+l

is true; i.e.

o2 }..... _k = O, > 0 .

According to the hypothesis of the model the ¢ are normally distributed_

uncorrelated (and hence independent) with common variance, c_2. ThUS

the joint pdf of the random vector y is (for a parameter point in Q)

N i i k

f(y; _(k), G2) ='_T (2_a2) "N exp {- _-_ (yb i_=l
n=l

1 z(k)_(k) z(k)_(

Now to determine R it is necessary to maximize f over Q and over %

form the ratio k_ and select values of y for which this is highest•

sup f

R = y X(y) =sup f > X ,
oo

where k is a critical value chosen so that
G

• }Pr i yCmlH° is true < G;

here G is called the significance or rejection level of the test•
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We recall _ow that a sum of squares of m normal indepdent random

variables with mean zero and variance one (N(O,I)) is said to be a Chi-

square variable with m de_rees of freedom. The ratio of the average of

two such sums of squares of independent N(O,I) variables, with m I terms

in the numerator and m 2 in the denominator, is called an F variable

with m I and m 2 de_rees of freedom. The probability distribution of the

F variable is widely tabulated. The following result is the one pertinent

to our problem. For a statistical linear regression model, where the

errors are N(O,o 2) independently distributed, the rejection region R of

significance level % provided by the likelihood ratio criterion for

rejecting H° as described above, is given by

(_(k) _ _(k-r)2)/r > F(_) .[

R = {Yl e(kl2/(N_k ) -- r,N-kJ

F(_)r,N-k is the critical value in the Fr,N_ k distribution for which
where

F }Pr {Fr,N-k > r,N-k = _"

The proof of this important theorem is obtained by constructing the

likelihood ratio k, in which the maximization problems are observed to

be essentially the least squares problem, then reducing the inequality

k(y) >_ k which defines the rejection set to the form given in the con-

clusion. Used in the proof are: The orthogonal transform of y based on

' ' z' ' and the fact that
the Gram-Schmidt vectors zi,...,Zk_r, k_r+l,...;Zk

orthogonal transforms of normal vectors are normal. Although the proof

is available in numerous references, we sketch it here.
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Lemma i. Let y be a vector of N(m , 2), independent, random variables, and

let y' = Py be an orthogonal transform of y. Then y' is a vector of N(m_,_2),
N

independent, random variables, with m' = E PBvmv, where P = (p_v) . Proof:
B V=±

Write mT : (ml,...,_), and let G(_') be the distribution function of y'.

Then

G({')= PrEy'_<{']= PrE__<{']--PrE{yl__<{')]

(2w_2)-N/2exp{.
I

2a 2
(j-m)T (y-m)}.

Now, making the transformation y' = Py in the integal, the Jacobian of the

transformation is the determinant of the orthogonal matrix P, hence in

absolute value is one; the domain of integration is transformed into

1 (y,_ _)T (y, _)}.{Y' [y' < _'} ; and the integrand becomes (2w_2) -N/2 exp- { 2a---_-

Hence

G({') = _=l -- (2_ 2) exp - 2_2 (y_ - m_) 2 dye,'

so that obviously the ' are N(m', 2), independent.
Y_

It is a corollary of lemma i that, if ¢ is a vector of N(O, o2),

independent variables and ¢' = pc, p orthogonal, then ¢' is a vector of

N(O,_ 2) independent variables.

Lemma 2. Let y = z(k)_ (k) + c be a statistical linear regression model.

Let z* (k) be the matrix of orthonormal vectors generated from Zl,...,z k by

the Gram-Schmidt process, so that z*(k) = z(k)Q (k) where Q(k) is upper

triangular. Let _,(k) = Q(k)-l_ (k). Then _k-r+l = ... = _ = 0 if and only

if9-r+l.....9 =O.
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Proof: Suppose _k-r+l ..... Bk = 0; it follows from the equation

B.(k) = Q(k) Q(k)-i B and the fact that Q (k)-I= is upper triangular that

= = _k-r+l_ 0, then _-i 0, etc., until * = 0. The converse argument

is the same.

Proof of the main theorem: By Lemma 2

' _k-rtl "" _ = 0, o2 > 0 ,

and of course, since y = z(k)_ (k) + e and

z.(k)_* (k) = z(k)Q(k)Q(k)-l_ (k) = z(k)_ (k), then y = z*(k)_ *(k) + e.

sup[f(y; (k),o2)1

wheref -- -"/2 1
' 202

with e = y - z*(k)_* (k) . Clearly the extremizations in both cases can be

obtained by first minimizing eT *¢ with respect to the _i' substituting these

2
back in_ and maximizing the resulting expressions with respect to G .

But minimizing eTe is precisely the LS problem encountered before.

Using (as before) the orthogonal transform, y' = Py and e' = Pe where the

first k rows of P are z*(k)T,

T ,Te, ( , .)2
e ¢ = e = yl-_l , - _)2 ++ "'" + (Yx

N

y,2.

b=k+l

Obviously eT _iover O is minimized when * = y_, i = l,...,k with the value
N

2 (k) 2 T
' : e ; while ¢ e is minimized on _ whenof cTe reducing to _ y_

b=k+l

_t = Y_' i = l,...,k-r (recall that _-r+l = "'" : _ = 0 in this case),

T
with the value of e e reducing to
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N

in this case.

Substituting these extreme values back in and maximizing the numlrator

2 _ , ,_2 e _k)_""

and denominator with respect to o , gives xor the numerator _ = N

and for the denominator _2 _(k) _ _(k-r) 2 + e(k)2
(y --

N

Now

Replacing these in the expression for h(y) we get

[ Aa2f/2 (_(k) _(k-r) _2_(yl-_cmJ =[ 1+ __ _ @/2
,,rk_2 J •G

e

2 :N/2

R = {ylk(y) > )_C_ = {yl[1 + _y(k). _(k-r)) l > X J

- e(k)2 -

= {yl(_r(k)- _(k.r)_/r (;_2/:N _ 1) (:N-k) }2 > r "
e (k) /(:N-k)

(_( _( . e(k) 2Finally, since k) k-r))2 k 2 N- : _ yi 2and = z y' ,
i:k-r+l b=k+l

since by Lemma 1 y' = Py_ a vector of normal independent variables with

2

common variance _ ; and since under the hypothesis Ho EYi' = 0 (i=k-r+l_..._k)_

then the ratio

(_(k) - _(k-r))2/r

e(k)2/(N_k)

k

< (y_/o)2/r
i=k-r+l

N

z (y_/_)2/(N-k)
_:k+l
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is a ratio of averages of sums of squares of N(O,I) independent random

variables when H is true. That is_ the likelihood ratio is equivalent
o

to an F statistic when H is true.
o
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SELECTION OF SIGNIFICANT ESTIMATION VARIABLES

IN A LEAST SQUARES PROBLEM: EMPIRICAL COMPUTER STUDIES

The object of these studies was to investigate the usefulness of

the step-up procedure or modifications of it, in choosing a subset of

a large number of estimation variables which is good in a least squares

sense. In the first phase of these studies we wished to compare the

step-up procedure with the procedure of finding the best subset at

each stage. Because of the large number of matrix inversions required

in the last method we could handle only a very small number of terms.

The results of the first phase are summarized in the two examples

which follow. In the first run we note that the step-up procedure

gave two terms with R2 = 0.724 whereas the best two terms give R2 : 0.886.

Phase One - Run i

In this run the dependent variable was

O

F(Xl,X2,X3) = 3/( 3)

The polyngmial model was a balanced polynomial linear in XI, X2, and

X3, i.e., alXI+a2X2+a3X3+a4XIX2+a5XIX3+a6X2X_÷a_IX2X3 . The 125

data points were in a rectangular design with XI _ .25(.25) 1.25, X2 =

•25(.25) 1.25, and X 3 = .25(.25) 1.25. As will be noted in this run,

the function F is actually independent of X2 and hence the estimation

variables Z2, Z4, Z6, Z7 should not enter the regression equation.
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Step-up Procedure Optimum Set
Estimation Estimation
Variable s R2 Variable s R2

5 569815 5 •569815

5, 3 •724129 3,i •885715

5, 3,i .957606 3,i, 5 -957606

5, 3,i,2 .957615 3,2, i,5 .957615

5, 3,1,2, 4 .957631 3,2, i, 5,4 .957631

5, 3,i,2, 4,6 .957632 3,2,6, i, 5,4 .957632

5,3, i,2, 4,6,7 .957634 3,2,6, i, 5,4,7 .957634

Note that the step-up procedure did not select the optimum subset of

two variables.

Phase One - Run 2

In this run the dependent variable and the polynomial model were the

same as in Run i. The 500 data points were in a rectangular design with

xI = .25(.25)2.5o,x2 = .25(.25) 2.5o, and X3 = .25(.25) 1.25.

Step-u_ Procedure Optimal Set

E st imat ion R2 E st imat ion R2Var iab les Variable s

i •702925 i •702925

i, 3 .884762 3, i .884762

i, 3,5 .963786 3, i,5 .963786

i, 3, 5,2 .963789 3,2, i, 5 .963789

i, 3, 5,2, 6 .963791 3,2, 6, i, 5 •963791

i, 3, 5,2, 6, 4 .963791 3,2, 6, i, 5,4 .963791

i, 3,5,2, 6,4,7 .963791 3,2, 6, I, 5,4,7 .963791

In this case, the step-up procedure gave the optimal subset in each

case.
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Conclusions from Phase One

These runs indicated that some modificatlon (e.g._ a throw-out rule)

might be helpful in obtaining a regression equation which would be close

to the optimal. To investigate every possible regression equation even

from a small set of terms is so time consuming that we did not use any

example with a large number of terms in this phase.

Phase Two

In this phase we used examples with a large number of terms. We

used various throw-out criteria to investigate the relative merits of

each. We did not find the optimal subsets.

Summary of Phase Two

In the first 12 runs in this phase we used a balanced polynomial

model to approximate the dependent variables

Iv - wv l-i/2
tX v _ _ = tv4±v3_v2a a,,l+X2__,_3i_ "i_"2_"3 j _"i'"2 "_3 j l

F2(xl,x2,x3) = exp(-x_2x 3)

= 2 2 2
FB(XI, X2, X3 ) J(XI+X2+X3) •

The results of these runs are tabulated below.

In the case of F3 = JX 2 2 2I+X2+X3_ the 47-term polynomial fits very well

= 2 2
with R2 0.999972. In fact the 4 terms XIX2_ X2X3_ XI_ X2 give a fit with

R2 _ 0.962. The first 7 terms obtained by the stepwise procedure are XIX2,

451



2 2 2_ 2 R 2X2X3, XI, Xg, X 3' XI' X3' and have = 0.992. With a throw-out

2 2criterion __ 1.44, however, we find that XIX2, XI, X2, X 3' XI' X3'

2 R 2
X 2 fit with = 0.996.

Now for the case F2 = exp (-XI_2X3) we found that the 47-term

polynomial fit with R 2 = 0.996. The first seven terms obtained by the

222 i_2_2 XIX2X3 ' andstep-up procedure were XI, X2X3, XI, X2, X3, X 3'

XI_2X3 with R 2 = 0.949._ With a throw out criterion __ 0.8 we find that

2 2 3 2
the seven terms X2X3, XI, X2_3, X__X2_3, XIX2X3, XI_2X3, and XIX2_ 3 are

a better seven and fit with R 2 = 0.965.

With a throw-out criterion _ 4. 9 we find that the seven terms

X1, X2X3, XI_3, XIX2X3, XI_2X3, XIX2_, XI_23X_ fit with R2 = 0.962 and

that the seven terms XI_ XIX2X3, XI_2X3 , XIX2_ _, XI_2_ _, XI_2_ 3, and

XI_ 2 fit with R 2 = 0.978 . We also find in fact that the first five

terms in the last fit have R 2 = 0.962. Thus the five terms XI, XIX2X3,

i_ IX2_2 X3X3X 2X 2X3 _ X 3_ and I 2 3 fit better than the seven terms given by the

step-up procedure with no throw-out criterion.

4 3 2

Xl+X2+X 3

In case F I IXI+X2 - 2X _

= _ where the denominator has zeros in the

region of fitting we find that the fit is not quite as good. The 47 -

term polynomial gives R 2 = 0.938. Again, however, we find that a seven-

term polynomial will do almost as well. The straight step-up procedure

gives the seven terms X3X3, X 3, X3, X23, XI_2X3, X3X2_3, and X2X 3 which

fit with R 2 = 0.894. With a throw-out criterion _ 6.3 we find that the
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2

X_3 fit with =seven terms X 3, X3_ XI_3_ XIX2X_ X2X3_ XIX2_3, and R2

o.9o2.

This example also gave rise to the situation where, while XI_ 3 is

the best single term_ it is not one of the best two terms. The best two

terms involving X3X 3 are Xl_ 3 and X_ which fit with R2 = 0.733. However_

fit with
2 R2

the two terms X and X 3 = 0.775. Another situation which

occurred on this example was that with a throw-out criterion of _ 4.9
w

we would arrive at a five-term polynomial with R2 = 0.876 whereas the

step-up procedure with no throw-out criterion leads to a five-term

polynomial with R2 = 0.884. Hence, having a throw-out criterion is not

always better.

As an example of a non-balanced design with an arbitrary linear

model we used a correlation matrix given in Anderson and Fruchter_

"Prediction Selection Method_" Psychometrika, Vol. 25_ No. i. The

result s are tabulated in Run 17. Here we found that the throw-out

criterion was not used_ and so the variables were selected by the step-

up procedure without this option. The overall fit using 14 variables

gave R2 = 0.270 and an F(14,295) = 7.8 which is significant at 0.005.

However_ an F test of the hypothesis that the last 9 variables have

zero coefficients is not significant at even the 50% level. The R2

for the first five terms of the step-up procedure is R2 = 0.259.

Phase Two - Run i

In this run_ the dependent variable was F(XI_X2_X3) =

4 3 2 i-i/2(XI+X2+X 3) IXI+X 2- _X 3 • To fit this expression we used the polynomial
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mode i

3 3 2 £ Z £3

z z z a_l_2_3XlIX2 ax3
_l=o _2=0 L3=o

All the terms_ including the dependent variable are first adjusted for

their means. Thus we wish to find subsets of the 47 terms in this

polynomial which give the best approximation to the dependent variable.

The values of F(XI, X2_X3]. . and X _ were all calculated at 5oo
3

points in a balanced design. In this run we used the points X I =

•25(.25) 2.50, X 2 : .25(.25) 2.50, and X 3 = .25(.25) 1.25.

The throw-out criterion for this run was F0 = 1.5. A tabulation

6f the terms as they were brought in follows. (Reduced R 2 is i N-I (I_R 2)
N-m

where R2 is the square of the multiple correlation coefficient and N = 500,

the number of observations, and m is the number of terms in the model.)

m

Terms Re duce d

Sweep in Model Term No Term F in F out R 2 R2

i i 37 X3X 3 1058 .680 .680

2 2 36 X 3 98.96 -733 -733

2

3 3 2 X 3 99- 34 •778 •777

4 4 9 X3 103.15 .816 .815

5 5 28 XI_2X3 292.59 .884 .884

6 6 43 XI_2_3 25.37 .890 .889

7 7 4 X2X 3 19.01 .894 .893

8 8 14 XIX _ 26.76 .900 .898
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J

Sweep

9

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

26

27

28

29

m

Terms

in Model

9

8

9

i0

9

8

9

i0

ii

12

13

14

13

14

13

14

15

16

17

16

17

Term No Term F in F out R2

16 x_x2x3 15.58 .9o3

2 0.21 .903
2 X3

_7 x_x2x_ 8.34 .9o4

_9 _3 _o% 9o6
_ _ o._ ._o_
37 XI_ 3 1.47 .906

I X 3 12.94 .909

i0 X_X 3 ii. Ol •911

45 XI_ _ 15.92 .913

5 X2X _ 14.62 .916

38 XI_ _ 6.96 .917

2 6.66 .918
2 X3

i X3 0.15 .918

40 X___X_ 6.69 .919

28 XI_2X3 0.04 .919

_ x_ _._ ._o
_ _ _ _o
12 XI 3.93 .921

ii X 3 3.27 .921

4 x2x3 o.o2 .921

21 x1x_ 1.62 .922

Reduced

R2

.901

.9Ol

.903

.9o5

.9o5

.9o5

.907

•909

.912

.914

.915

.916

.916

.917

.917

.918

.918

.918

.919

.919

.919
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Run 2

In this run the dependent variable, the polynomial model and the

data points were all the same as in Run I. The throw-out criterion was

F0 = 0.9. This run should tend to throw out terms less often than Run i.

This should lead to fewer sweeps to reach k terms but perhaps the fit

for these terms will not be as good as in Run I. The tabulation through

Sweep 13 is the identical with Run i.

m

Terms Reduced

Sweep in Model Term No Term F in F out R2 R2

13 9 43 X3X2X 3 O.li .906 .905

14 i0 I X 3 ii. 46 •909 •907

15 9 37 X_X 3 O.05 •909 •907

16 I0 i0 X3X 3 ii. Ol .911 •909

Sweeps 16 through 29 are the same as Run i

29 17 21 XIX3 i.62 .922 •919

33
30 16 45 XIX 2 O.03 .922 •919

31 17 26 X2X 2 i. 34 .922 •919
13
2

32 18 24 XI 3- 09 .922 .920

33 19 13 XIX 2 I.20 •923 .920

34 20 18 XIX2 2.86 .923 .920

35 19 21 XIX3 0.O0 •923 .920

36 20 i X3 1.01 .923 .920

X3. 2
37 19 ii 2_3 0.59 .923 .920
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m

Terms Reduced

Sweep in Model Term No Term F in F out R 2 R2

38 _ 37 X_X 3 1.42 .923 .9_

X3X 3-2
39 21 47 1 2A3 1.53 .924 .9_

33
40 22 45 XIX 2 2.13 .924 .921

41 23 7 X_X 3 1.94 .924 .921

42 22 16 XIX2X 3 0.31 .924 .921

32
43 23 23 XIX2X 3 I.i0 .924 .921

X3. 2
44 24 ii 2x3 1.22 .925 .921

45 25 25 XI_ 3 0.92 .925 .921

Run 3

In this run the dependent variable_ the polynomial model and the data

points were all the same as in Run I. The throw-out criterion for Run 3

was F0 = 8.0. This run should tend to throw out terms more often than

Run ! or Run 2. This should lead to more sweeps to reach k terms but

hopefully the fit for these k terms will be better than in Run I or Run 2.

(Compare, however, Run 3, Sweep 7, with RUn i, Sweep 5 and also Run 3,

Sweep 18 with Run i, Sweep 12). Note that in Run 3 we see that the best

term No. 37 is not one of the best two terms.

m

Terms Reduced

Swee_____pin Model Term No Term F in F out R2 R2

1 1 37 X_X 3 1058.24 .680 .680

2 2 36 X_ 98.96 .733 -733

2

3 3 2 X3 99.34 .778 .777

4 2 37 X_X 3 4.88 .775 .775
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m

Terms

Sweep in Model Term No Term F in F out R 2

5 3 9 x3 lO2.13 .814

6 4 15 XIX 2 219.83 •871

2 2 18 48 •875
7 5 20 XIX2X 3 .

8 6 26 2 2 40 36 .885
XlX 3

2
9 7 17 XIX2X 3 22.30 .890

22

i0 6 20 XIX2X 3 5.12 .889

Ii 7 5 X2X 3 40.48 •897

12 8 20 XlX2_ _ 20.02 .901

13 7 15 XIX 2 6.22 .900

x3_ 2
14 8 ii 2_3 12.04 •903

2

15 7 2 X 3 2.93 .902

16 8 38 X3_ 2 26.81 •907
IA3

17 9 18 XI X2 22.83 •911

18 i0 41 X3X _ 2
1 2x3 8.20 .912

Reduced

R 2

.813

.8_

•875

.884

.889

.888

.896

•9oo

.899

•9Ol

.9Ol

._6

.9_

.911

Run 4

In this run the dependent variable, the polynomial model and the

data points were all the same as in Run i. The throw-out criterion was

F0 = 10 -3 . This run should not throw out variables very often, at least

not until the_ are very insignificant. A partial tabulation of this

run follows.
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Sweep

I

2

3

4

5

6

7

8

9

i0

ii

12

13

14

15

16

2o

25

3o

35

4o

4_

5o

m

Terms

in Model

1

2

3

4

5

6

7

8

9

i0

II

12

13

12

13

14

16

21

22

27

3O

31

34

Term No Term

37 X_X 3

36 X_

2

2 X3

9

28 X_X2X 3

X3X 2
43 1 2X3

4 X2X 3

2

14 xlx 3

16 XIX2X 3

41 X3X .2
1 2X3

33
45 XIX 2

21 XIX _

9

1 X3

i0 X_X 3

2

2 X 3

25 X_X 3

2
24 x1

39 X_X 2

9
22

20 XIX2X 3

F in

lO58.oo

98.96

99.34

103.15

292.59

25.37

19 Ol

26.76

15 58

io 4o

ii 46

23 71

6 60

3.93

3.i0

3.67

5.35

0.53

15.23

F out

0.00

0.00

0.00

0.00

R2

•68o

•733

•778

.816

•884

•89o

.894

•9oo

•903

.905

.907

•911

•913

•913

.913

•914

•916

.920

•923

•927

.92828

•92866

•93196

Reduced

2
R

.68o

•733

•777

.815

•884

.889

•893

•898

.901

•903

.9o5

•909

.910

•911

•911

•911

.914

.917

.920

•923

•92385

•92410

•92714
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m Reduced
Terms
in Model Term No Term F in F out R2 R2

Swee_____p

55 37 6 X2 0.00 •93459 •92950

60 40 42 32 0.44 93682 .93146
XIX 2

2 0.55 .93730 .9312465 45 18 XlX 2

66 46 9 X3 1.04 .93745 .93125

67 47 30 XIX222 5.08 .938142 .931860

Run 5

In this run, the dependent variable was F(XI, X2,X3) = exp (-XI2X2X3).

We used the same balanced polynomial model as in the first four runs_ cubic

in XI and X2, quadratic in X3. The 500 data points were in the same

balanced design, XI = .25(.25) 2.50, X2 = .25(.25) 2.50, X 3 = .25(.25) 1.25.

The polynomial model in this case should fit better than in the first

four runs.

The throw-out criterion in the first runs in this series was F0 = 1.5.

m Reduced

Temms R2 R2
Sweep in Model Term No. Term F in F out

i i 12 XI 836.43 .627 .627

2 2 4 X2X 3 529.77 .819 .819

2 212.65 .874 .873
3 3 24 XI

22

4 4 8 X2X 3 308.40 •922 •922

X 3._r2
5 5 44 i_2_ 3 61.94 •931 •930

6 6 16 XIX2X 3 103.35 •943 .942

2 62.76 .949 .949
7 7 28 XIX2X 3

22 231.18 .965 •965
8 8 20 XIX2X 3
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P

Sweep

9

i0

ii

12

13

14

15

16

17

18

19

2o

25

27

28

29

3o

35

4o

44

m

Terms

in Model

7

8

9

i0

Ii

12

13

14

13

14

15

16

17

18

17

18

19

SO

25

26

26

Term No

12

23

22

21

27

25

3o

38

24

33

39

32

42

35

23

8

14

45

21

21

21

Term

XI

X X3_2
1 2x3

XIX32X3

XIX3

22
XIX 2

X3.2
i_3
2

XI

X13X2

222

XIX2X 3

32
XIX 2

32
XIX2X 3

XIX _

X3_3
1A2

XIX3

XIX3

XIX3

F in

27.03

138.53

411.57

8.79

97.48

67.45

73.37

32.08

23.02

75.84

33.90

14.09

II.81

18.oo

5.57

11.63

0.93

F out

0.79

0.03

1.20

1.12

R2

•965

.967

.974

.986

.986

.989

•990

•991

.991

.992

.992

-993

•99431

•99449

.99446

•99459

•99479

•99485

•99594

•99604

.99606

Reduced

R2

.965

•967

•974

.986

.986

.988

•990

•991

.991

•992

•992

•993

•99412

•99428

•99427

•99440

•99459

.99464

•99573

•99583

•99585
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Run 6

This run used the same dependent variable_ polynomial model and data

points as in Run 5. The throw-out criterion was F0 = 0.9. This will tend

to throw out terms less often than in Run 5. In fact_ however_ the runs

are identical through Sweep 26.

m Reduced

Terms R2 R2
Sweep in Model Term No Term F in F out

25 17 42 32XIX 2 33.90 •99431 •99412

2.3..2 14.09 .99447 .99428
26 18 35 _i_2_ 3

32 13.66 .99462 .99492
27 19 ii X2X 3

22

28 18 20 XIX2X 3 O.O0 •99462 •99443

2 16.67 •99480 •99461
29 19 14 XIX 3

33 •99467
30 20 45 XIX 2 6.19 •99487

35 23 42 XIX232 0.44 .99574 .99555

X3. 2 O. 48 •99609 •99588
40 26 ii 2A3

41 25 38 X3_ 2
IA3 O. 59 •99608 •99589

42 24 14 XIX _ O.61 •99608 •99589

43 25 31 XI2X2_3 0.79 •99608 •99589

Run 7

In this run the dependent variable; the polynomial model and the

data points were all the same as in Run 5. The throw-out criterion was

F0 = 8.0. The variables brought in were the same as in Run 5 through

Sweep 7.
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t

lP

Swee_

7

8

9

1(3

ii

12

13

14

15

16

17

18

19

20

21

22

23

24

25

27

m

Terms

in Model

7

6

5

6

7

6

5

6

7

8

9

i0

ii

12

13

14

15

14

13

14

15

Term No

28

24

44

2o

47

4

8

31

27

23

4

25

26

36

44

3o

33

47

12

8

22

Tern

2

XIX2X 3

X3X 2.2
i 2_3

X3W3,2
I--2_3

X2X 3

22

X2X 3

22

XIX2X 3

x x2
X X3_2
1 2_3

x2x3

22

XlX 3

..3

X3_ 2_T2

Ix2A 3

22
XIX 2

23
XIX 2

X3X 3 _2
1 2_3

X I

22

X2X 3

X1X_X 3

F in

62.76

69.96

ioo.42

63.95

269.22

123.13

73.73

72.64

5o'.82

,,2.2,,

46.61

47.15

78.01

55.18

6.18

F out

4.41

4.83

1.81

1.07

o.88

3.oo

R2

•94925

•94879

•94829

•95471

•96239

•96225

•96217

.96651

•97836

.9827o

.98496

.9869o

.98814

._9_

•99023

•99109

•99233

•99232

•99227

•99306

•99314

Reduced

R2

.94863

•94827

.94787

•95425

•96193

.96187

•96186

•96617

•97809

.98245

•98471

•98666

•98790

•98905

.98999

.99085

.99211

.99211

.99208

•99287

•99295
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Run 8

In this run the dependent variable_ the polynomial model and the data

points were all the same as in Run 5. The throw-out criterion was F0 = 10 -3 •

The variables brought in were the same as in Run 5 through Sweep 8.

m Reduced
Terms

Sweep in Model Term No Term F in F ou_____t R2 R2

2 2 251.18 .96550 .96501
8 8 20 XIX2X 3

9 9 23 3 2 26.72 .96728 96675
XIX2X 3

I0 IO 22 XIX_3 137.60 .97447 .97400

ii Ii 21 XIX _ 416.70 .98623 .98595

12 12 36 X_ 32.83 .98710 .98681

13 13 40 X_X2X 3 50.05 .98830 .98801

14 14 15 XIX 2 9.58 .98853 .98822

15 15 13 XIX 3 148.72 .99122 .99097

2
20 20 6 X2 20.37 .99481 .99461

2 3 10.32 .95537 .9951425 25 33 XIX 2

30 30 7 X_X 3 4.12 .99576 .99550

35 35 30 2 2
XIX 2 3.22 .99619 .99591

40 38 17 XIX2X _ 5.45 .99630 .99601

45 43 38 X3_ 2
ix3 2.68 .99638 .99605

50 44 8 X2X 2
2 3 0.87 .99640 .99606

54 46 32 2 2 2
XIX2X 3 0.18 .996399 .996042

55 47 46 3 3 2.21 .996416 .996052
XlX2X3

56 46 12 XI 0.00 .996416 .996061

57 47 12 XI 0.00 .996416 .99605 2
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J

Run9

In this run the dependent variable was F(XI, X2,X3 ) = y XI+X2+X3.2 2 2

The 47-term balanced polynomial, cubi_ in XI and X2 and quadratic in X3,

was used as the model to fit the dependent variable over the 500 data points

XI = .25(.25) 2.50, X2 = .25(.25) 2.50, and X3 = .25(.25) 1.25.

As expected in this cas% the fit is very good. Because of the symmetry

involved the terms in XI and X2 should be the same, at least in the com-

plete model. The lack of symmetry in the way these terms were brought is

interesting.

i

2

3

4

5

6

7

8

9

i0

ii

12

The throw-out criterion for this run was F0 = 1.5.

m

Terms

in Model Term No Term F in F out

i 15 XIX 2 1337.01

2 4 X2X 3 98.19

2
3 24 XI 309.02

2 7_2k o_
4 6 X 2 .....

2

5 7 X2X 3 302.54

6 12 XI 553.58

2 202.14
7 2 X 3

8 3 x2 427.lO

9 4 x2x 3

8 14 XlX _ 469.05

2 169.84
9 19 XIX2X 3

2 177.58
i0 5 X2X 3

i.44

Reduced

_ R2

.72861 .72861

•77338 .77293

.86037 .85981

.96201 .96178

•97644 .97625

•98890 .98879

•99213 .99204

•99579 .99573

-99578 .99573

•99784 .99781

•9984O -99837

.99882
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Sweep

m

Terms Reduced

in Model Term No Term F in F out R 2 R2

3 144.20 •99909
13 ii 9 X2

14 12 36 X3 204.27 •99936

15 13 17 XIX2X _ 171.96 •99953

16 14 21 XiX3 87.04 .99960

17 15 39 X_X 2 59.18 .99964

18 16 30 XIX222 125 .68 .99972

19 17 i X3 55.81 •99975

20 18 4 X2X 3 114.22 •99980

25 23 16 X2XIX3 107.82 •99994

30 26 38 X3_ 2 40.36 •99996
ix3

22

35 27 20 XIX2X 3 0.09 •99996

40 30 21 XIX3 0.00 .99996

33
45 35 45 XIX 2 9.43 •999969

46 34 39 X_X 2 O. 26 .999969

47 35 21 XIX3 3.23 •999969

48 36 41 X3X . 2
12x3 0.40 .999969

Run i0

In this run the dependent variable_ the polynomial model and the

data points were the same as in Run 9. The throw-out criterion for this

run was F0 = 0.9. The tabulation of the results is identical with Run

9 through Sweep 8.

466



Sweep

m

Terms Reduced

in Model Term No Term F in F out R2 R 2

8 8 3 X2 427.10 .99579

2. 470.79 .997854
9 9 14 xlx 3

i0 i0 16 XIX2X 3 174.96 .998420

ii ii i X3 212.37 .998899

12 12 9 X_ 156.79 .999167

13 13 36 X_ 230.76 .999435

14 14 13 XIX 3 279.64 .999642

3 3 82.42 99969415 15 45 XlX 2

_2_3_2 52.71 .999724
16 16 35 _i_2_ 3

17 17 37 X_X 3 107.84 .999774

18 18 21 XIX _ 47.97 -999795

19 19 39 X_X 2 259.26 .999867

2 2_ 202.22 .9999062O 20 31 XIX 3

r 3v2 _ _ _nn_n
25 25 23 XIX2_ 3 f_._o .j_

2 2

30 28 29 XIX2X 3 3.73 .999957

33
40 30 45 XIX 2 6.72 .999960

2 2 4 50 .999963
50 32 29 XIX2X 3 •

3 2
60 36 41 XIX2X3 10.53 .999967

2 2 2 0 86 .999968
65 37 32 XIX2X 3 •

Run ii

In this run the dependent variable, the polynomial model and the data

points were the same as in Run 9. The throw-out criterion was F0 = 8.0.

The variables were included in the same order as in Run 9 through Sweep 15.
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m

Terms

Sweep in Model Term No Term F in F out R 2 : Reduced R2

2 171.96 •999528
15 13 17 XlX2X3

16 12 7 X22X3 2.77 •999525

17 13 39 X3X 2 49.15 •999569

18 14 i X3 37.69 .999600

20 14 21 XIX3 59.03 •999642

21 15 30 XIX222 142.48 •999723

22 16 13 XIX 3 52.63 •999750

23 17 4 X2X 3 58.95 •999778

24 18 16 XIX2X 3 60.90 •999803

25 17 17 XIX2X _ O. 20 •999802

26 18 16 X3X 3 6i.82 •999825

27 19 22 XIX3X 3 177.78 •999872

28 20 37 X3X 3 i02.41 •999895

29 21 40 X3X2X 3 390.39 •999942

30 22 46 33XIX2X 3 38.26 •999946

35 25 38 X3X 3 i0.63 •999957

36 24 14 XIX _ 2.26 •999957

_3_3r2
37 25 47 AIA2A 3 7.35 •999958

Run 12

In this run the dependent variable_ the polynomial model_ and the

data points were the same as in Run 9. The throw-out criterion was Fo

The variables came in the same order as in Run i0 through Sweep 28.

No throw-outs were made.
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m

Terms

Sweep in Model Term No

25 25 23

30 30 42

35 35 43

4o 4o 28

45 45 25

46 46 34

47 47 47

Term

X X3_2
1 2_3

X3_ 2
IA2

32
XIX2X 3

X21X2X3

X2X 3

23

XIX2X 3

X3X3. 2
1 2A3

F in F out R2 = Reduced R2

76-83 .999950

6.11 .999958

15.94 .999962

21.80 .999967

28.42 .999971

11.16 .999972

i.i0 .999972

Run 13

In this run the dependent variable was F(XI, X2,X3) = exp (-Xl_2X3)

as in Run 9. The polynomial model was the same 47-termbalanced polynomial

cubic in XI and X2, quadratic in X3. There were i000 data points in a rec-

tangular design XI = .25(.25) 2.50, X 2 = .25(.25) 2.50, X3 = .25(.25) 2.50.

On this run the throw-out criterion was F0 = 1.0.

m

Terms

Sweep in Model Term No Term F in F out R____2

i i 12 XI 1277.16 .561

2 2 4 X2X 3 619.57 .729

2 582.22 .8293 3 24 XI

2 2 472.27 .884
4 4 8 x2x3

5 5 28 X_X2X 3 267.53 .9088

6 6 16 XIX2X 3 69.37 .9147

7 7 40 X_X2X 3 225.79 .9305
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Sweep

8

9

i0

ii

12

13

14

15

16

17

18

19

2O

21

22

23

24

25

3o

35

36

37

m

Terms

in Model

8

9

i0

Ii

12

13

14

15

16

15

16

17

16

17

16

17

18

17

22

25

26

27

Term No

36

ii

i0

9

13

15

44

2o

14

12

18

21

4

32

44

12

4

9

19

44

22

I

Tern

x3.2
2_3

x3x 3

4
XIX 3

XIX 2

X3X2. 2
1 2x3

X1X _

X1

X1X2

X1X32

X2X 3
222

XIX2X 3

X3_ 2_r2

i_2_ 3

XI

X2X 3

4
XlX2X 3

x3 r2_2
I_2A 3

XlX3X 3

x3

F in

27. lO

27.63

151.95

234.89

23.'34

141.45

84.24

257.55

13o .45

307• 20

113.99

20.32

31.96

53•90

8.6o

6.49

3.53

2.o5

F out

0.01

o.53

o.o9

o.75

R 2

.9324

.9342

•9430

.9539

•955o

•9606

•9637

.9713

.9746

•9746

•980673

•982683

•982674

•983o 25

•983023

•983658

•984415

•984403

•986977

•988926

•988966

•988989
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D

Run 14

In this run the dependent variabl% the polynomial model and the data

points were the same as in Run 13. The throw-out criterion was F = 10 -3 .
O

The tabulation is identical with Run 13 through Sweep 16.

m

Terms

Sweep in Model Term No Term F in F out R2

16 16 14 XIX _ 130.45 .9746

17 17 18 XIX _ 318.07 .98084

18 18 32 XIX2X3222 144.76 .98330

19 19 21 XIX _ 155.92 .98560

X3_.3_2
20 20 47 !_2_ 3 16.89 .98584

21 21 34 23 53.87 98658
XIX2X 3

22 22 19 XIX_X 3 4.65 .98664

23 23 17 XIX2X _ 25.46 .98698

23 89.60 9880824 24 33 XIX 2

v3v 2
25 25 23 XI_ 3 7_.91 ._ 98827

2 lo.28 9892630 30 2 X 3

35 35 38 X3_ 2 4.23
i_3 .98950

40 36 22 XIX_X 3 0.91 .989603

45 37 40 X_X2X 3 0.00 .989686

50 40 26 XIX322 2.43 .989835

55 39 21 XIX _ 0.00 .989862

60 42 ? 4.51 .990066

65 45 ? 0.05 .990040

66 46 ? 0.00 .990040
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Run 15

In this run, the data were taken from Bulletin 336_Agricultural

Experiment Station, AuburnUniversity, Auburn, Alabama.

The throw out wasF0 = 10-3 but wasnever used.

m Reduced
Terms R2 R2

Sweep in Model Term No Term F in

I i 4 X4 86.98 .696 .696

2 2 2 X2 3.14 .720 .712

2 0 64 .725 .710
3 3 5 X4 •

4 4 3 X3 0.24 .726 .704

5 5 6 XIX 4 0.13 .728 .696

6 6 i XI 0.58 .732 .693

Run 16

This run used the same data as in Run 15, but the polynomial model

was taken to be a balanced polynomial linear in XI, X2, and X 3 and quad-

ratic in X4. This gives 23 terms in addition to the constant term.

m Reduced

Terms R2 R2
Sweep in Model Term No Term F in F out

i i i X4 86.98 .69596 .69596

2 2 5 X3X _ 3.38 .72142 .71409

3 3 3 X3 0.41 .72453 .70964

4 4 7 X2X 4 1.13 .73314 .71091

5 5 14 XIX _ 1.71 .74590 .71686

6 6 12 X I 5.75 .78361 .75179
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sweep

7

8

9

i0

ii

12

13

14

z5

16

17

18

19

2O

21

22

23

24

25

26

27

28

m

Terms

in Model

7

8

9

lO

ll

12

13

14

13

14

15

16

17

16

17

,18

17

18

17

"18

19

2O

Term No

9

16

2

23

4

6

17

13

23

8

15

21

i0

12

18

23

21

19

3

ii

12

22

Term

X2X 3

XIX3X 4

XIX2X3X _

XBX4

X2

XIX3X _

XIX 4

X!X2X3X _

X2X _

XlX 3

XIX2X 3

X2X3X 4

XI

XIX 2

XIX2X3X _

XIX2X 3

xlx2x4

x3

X2X3X _

X I

XIX2X3X 4

F in

0.55

2.55

1.51

3.49

0.34

o.98

0.74

2.02

0.64

o.27

0.i0

o.35

o.5o

o .89

0.61

0.61

0.12

o.19

F out

0.00

• vv

0.00

0.00

R2

•78724

•80340

.81280

•83293

•83491

.840665

•845059

.856626

•856624

•860176

.861736

•86 2309

.864448

_ h h _,_

•867472

•872836

•872835

•876437

.876435

.879902

•880637

.881802

Reduced

R2

.74856

.76040

.76449

.78281

•77798

•778069

.776197

•784939

.792901

.790265

•784308

•776253

•770151

.775279

•774572

•784373

•780957

.790476

.787099

.778325

.769515
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m

Terms Reduced

Sweep in Model Term No Term F in F out R 2 R2

29 21 3 X3 O. 20 .883701 .761282

30 20 19 XIX2X 4 0.00 .883697 .773210

31 21 20 XIX2X _ O. 13 .884550 .760023

32 22 21 XIX2X 3 O.06 .884958 •750743

33 23 19 XIX2X 4 0.01 .885035 .736256

34 22 18 XIX 2 O.O0 .8850 34 •750906

35 23 18 XIX 2 0.00 .885035 .736256

Run 17

In this run the data were a correlation matrix taken from Anderson,

H. E., and Fruchter, B., "Predictor Selection Methods, " Psychometrika,

Vol. 25, No. i, March 1960.

was never used.

In this run the throw-out criterion of F0 = 10-3

m

Terms

Sweep in Model Term No F in

i i 6 56 •94

2 2 4 21.38

3 3 3 10.18

4 4 13 4.90

5 5 12 4.13

6 6 I0 i.38

7 7 i 0.92

8 8 8 0.71

Reduced

R2 R 2

156025 .156025

210965 .208403

236372 .231397

248451 .241083

258529 .2488O5

261881 .249741

264125 .249553

265861 .248844
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k

m

Terms

Sweep in Model Term No F in

9 9 2 o.42

I0 i0 5 O. 37

ii ll 9 o.4o

12 12 7 O. 29

13 13 ii O. 17

14 :]_4 14 o .o2

R2

266898

267803

268785

269503

269932

269970

Reduced

R2

.247413

.245837

.244330

.242538

.240435

.237908

Conclusions

We feel that the step-up procedure is aneffective tool in the problem

of finding a regression equation with a small number of estimation variables

from a model with a large number. Using the various throw-out criteria and

stopping rules_ the problems of interest could be explored. The throw-out

criterion and stopping rule which best fit the problem could be selected and

then a regression equation determined. We feel that most future investigation

of this procedure should be problem-oriented. We need the data for a problem

to help develop an effective way of handling the data.
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SELECTIONOFSIGNIFICANTESTIMATIONVARIABLES
IN A LEASTSQUARESPROBLEM:COMPDTERPROGRAMS

i. Comparison of variables selected by step-up yrocedure with

optimal set. This procedure was programmed in the AIDOL 58 compiler

language for the Burroughs 220 computer. Because of limitations on

the memory the procedure is restircted to 25 variables.

The purpose of the program is to determine whether or not the

step-up procedure actually selects the best k estimation variables.

This program was preliminary to a more elaborate program for the Bur-

roughs 5000.

Firs% the data are generated. The estimation variables ZI_ ..._Zn_ I

are terms of a balanced polynomial in independent variables

XI_..._X _ i.e._

Ll LIW

--_Z_:XI ...Xw ; £i:O;..._Li; i=l;2;...;w;

where (LI, ...,Lw) takes on all possible values in the given range except

(0; ...,0). Certain terms of the balanced polynomial are to be used to

estimate a dependent variable; which is some function of the X's. It is

convenient to label this variable Z . Corresponding to an index;
n

t.=l_2_l "''_Ti_i=l_2_'''_w_ the observed value of X.m is xit i. Thus_

corresponding to the set ___(tl''''_tn)Iti=l_2_'''_Ti_i=l_2_'''_wlr
is a

rectangular set of data-points t(Xltl,...,xrrt) _,, from which are calculated

observed values_ (z I,...,z n_l, Zw_n), of the vector consisting of the

estimation variables and the dependent variable.

Next, regression analyses are made using all possible combinations

of k estimation variables_ where k=2_..._n-2. For each k_ the combinations

of variables which give maximum and minimum sums of squares due to re-

gression (and hence maximum and minimum multiple correlation) are printed

along with the sums of squares.
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Finally, the step-up procedure is used. At the k'th step_ the

variable is selected from those not already included which maximizes

Sk(k'ys(_k') . The procedure then uses that variable _ as the pivot

variable. It makesthe followlng calculations:

(k'+l) Skj(k')
Skj = (k') J = 1,2,...n

S_k

Sik( ')Skj(k')S..(k'+l): S..(k')

iJ iJ Skk(k')

i = i; ...k-l,k+l, .•.n, j:l_2_ ...n.

r

In these calculations (Sij) is the augmented matrix of dot products of

the estimation vectors and the dependent-variable vector. The superscript

k' indicates the number of transformations on (Sij) in which a column has

been reduced to a unit vector. The list of variables, included in the

regression, and the sum of squares due to regression are printed.

In some cases the stepwise procedure gave optimal solutions, while

_n others it did not. In an attempt to run the program with 18 variables

the time required to calculate the regression analyses for all combina-

tions of variables turned out to be prohibitive.

0_eratin_ Instructions for B-220 Program

i. Load the program, with the proper procedure (FCN) inserted to

calculate the independent polynomial variables and the dependent variables.

2. Load the following data card, using more than one card if nec-

essary, with 5 punched in the first column of each card.
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Card Contents Card Format

a) Number of independent polynomial
variables

b) Number of observations of

independent polynomial variable

c) Repeat (b) for each variable

d) Order in independent polynomial
variable

e) Repeat (d) for each variable

f) Lower bound for diagonal element

g) Lower bound for difference be-

tween 1.0 and off-diagonal cor-
relation

h) F-statistic for stopping

Skip at least one column; punch

int eger

Skip at least one column; punch

integer

Skip at least one column; punch

integer

Skip at least one column; punch

floating point number

Skip at least one column; punch

floating point number

Skip at least one column; punch

floating point number; leave rest
of card blank.

3- Repeat (2) for each analysis to be made.

4. Load 2 blank cards.

2. Comprehensive program for selection of variables with step-up

procedure incorporating elimination rules and stopping rules. This

procedure attempts to select the most significant estimation variables

for a least squares fitting. It has been programmed for the Burroughs

5000 computer in the AIDOL 60 compiler language.

There are ¢_rae options for obtaining the n x n augmented (Sij)

matrix

(i) Either the (Sij) matrix or the correlation matrix may be read

in. (Only the diagonal and lower triangle are read in.)

(2) Each of the M observations (z l,...,z n) may be read in. An

estimate (ml,..._mn) of the means is available. As the data are read
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in_ the sums

M
S. =E

1

_=i
(Z_i-m i)

M
!

S.. =E

ij _-i
(Z i-mi) (Z j-mj) i = l_2_...n, j : i_2,..._i

are calculated. The adjusted (Sij) matrix

S.. =S..
mJ mj

S.S.

I j
M i : l;2_...n_ j = i_2_...;i

I

is then computed.

(3) Each observation maybe generated from balanced polynomials.

A set of fixed data points (x l,...x ) is given. The estimation

variables are the terms of a balanced pol_nomial_ so that

Z_k = X_l x_2 "''x_w

where _'l = %l_...;Li; i = l;2_...w. Each of these combinations of

exponents (except all exponents zero) corresponds to one estimation

variable. The _mlues x i_ ...,x may be read in_ or they may be part

of a rectangular design_ with each _ corresponding to some value of

the index (tl,...,t_), where t.m = l,...,Ti, i : 1,2,...,w. Values

z of the dependent variable may be read in or they may be computed
_n
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values of a specified function_ corresponding to values x i _..._x .

These vectors x l_..._x z n are generated in a procedure which may

be varied with each run. As the observations z 1_..._z n are generated_

the sum of squares matrix (Sij) is calculated as above.

Once the adjusted sum of squares matrix has been obtained it may

be used for more than one analysis. The diagonal and lower triangle

only are used in the analysis. Since the matrix is symmetric_ the

necessary values may be stored in the upper triangle (with the diagonal

in a separate vector) for performing other analyses under different

condit ions.

If the correlation matrix was read in_ it is used in the regression

analysis; otherwise_ there is the option of computing and using the

(s
correlation matrix. The matrix to be used shall be denoted as \ ij /

The program includes the option of printing this matrix.

In a hand computation the system of normal equations would be solved

for regression coefficients in a sequence of gaussian eliminations_ and

the inverse matrix would be built up on a unit matrix. The initial

@tableau ij for such an elimination and matrix inversion procedure

would be defined by
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(0) =
_iJ

s(°)
18

1

0

i = 1,2,...n; j = i_2_..._i

i'= 1,2,...n-1; j = i+l,...,n

i = l_2_...n; j : n+l

i = 1,2,...n; j : n+!,...,2n, j _ n+i

The original S matrix is of the form

(o)
Sll

#

(o)
%1 %2 (o)

(o)s (o) (o)
Sn-i_ i n-i; 2 """Sn-i; n-i

(o) (o) .s (o)s (o)
Snl Sn2 "" n;n-i nn

while the original R matrix is of the form
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(o) (o) (o) (o) 1 o o
SII $21 ... Sn_l_ I Snl -..

(o) (o) (o) (o) o z o
$21 $22 ... Sn_l_ 2 Sn2 ..-

(o) (o) (o) s (o)o o .z o
Sn-l_ i Sn-l_ 2 """ Sn-l_ n-i n_ n-i ""

(o) s (o) o o o z(o) (o) Sn,n-z nnSnl Sn2 ......

Because of symmetry operations need to be made only on the lower tri-

angle of the S matrix. Hence the entire R matrix need not be stored in

memory.

The stepwise procedure now begins• It is assumed that at the k'th

step_ k estimation variables Z ;...;Z are included in the regression_
Pl Pk

while the n-k-i variables Z ..._Z are excluded. The variables
q! _ qn-k-i

Z and Z which minimize (k')2 /SpiPi(Snp i ) (k') and maximizePmax qmin

(Snqj(k')2)/Sqjqj(k'), respectively, are determined.

Z shall be considered significant if
Pmin

The variable
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,4

(k') 2 /S(k')
(SnPmin) PminPmin

s(k')/(M-k-l)
nn

_> Fo

and the variable Z shall be considered significant if

(s(k'))2/s(k')
namax - %axqmax

[S(k') - (S(_') ')'2/S(k') ]/(M-k-2)
nn nqma x q.maxq.max

> FI

where FI and F0 are criteria based on the F-distribution. FI should not

be less than FO; if it wer% looping might occur.

The procedure now tests whether Z is to be dropped from the
Pmin

regression. There are two options for dropping a variable:

(i) If Z is not significan% it is dropped. (This may be
Pmin

bypassed by setting F0 equal to zero.)

(_j _= _=_ur= _±i_a_¢±j adds two variables and drops one.

If Z is not to be dropped_ the procedure checks whether
Pmin

to stop or not.

There are four criteria for stopping_ the first two of which are now

checked.

(i) If Z is not significant_ it is added and then the procedure
Pmax

terminates. (This may be bypassed by setting FI to zero.)

(2) When a specified maximum number of terms have been included in
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the regression, the procedure terminates. Unless otherwise

specified_ this will be the number of estimation variables.

(3) If the square of the multiple correlation coefficient is

greater than a specified amount R2max , the procedure ter-

minates. (This may be bypassed by setting R 2 to i.)
max

(4) When the procedure has gone through a specified number of

iterations, it terminates. If the procedure is following

the option of adding two variables and dropping one, this

will be three times the maximum number of terms; otherwise,

it will be twice the maximum number of terms.

If Z is not to be dropped, and if the procedure does not stop,

Pmin

Z is now added to the regression.

The jth column of the S matrix corresponds to the (j+n)-th of the

R matrix if the jth variable has been included in the regression and

to the jth column otherwise. (At all stages, either the jth column or

the (j+n)-th column of the R matrix will be a unit vector. The S matrix

will contain the column which is not. Of course the storage of the unit

vector is unnecessary.)

It will be assumed that the qth variable is to be added or dropped.

(The computational procedure is the same in both cases. It will also

be assumed that H. (k') = -i if the j-th variable is included in the
a

regression after k' iterations and that H._k,)t, = + i otherwise. Note
J

that H "-"_K')= + i throughout the analysis. H[k')depends on the status
n q

of the qth variable before_ rather than after it is added or dropped.)
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(s (k'+l)>The following formulae determine the matrix ij

8 (k'+l) 1

Sqq =
qq

(k')
S (k'+l) = Sqj

qJ S (k')
qq

j < q

S. (k')
(k'+l)_ _q

Siq S (k')
qq

i > q

Sqi(k')Sqj(k')H.(k') _ (k')(k'+l) (_') " _ q
Sij = Sij S (k'_

qq

j <i<q

s..(_'+1) : s..(k') siq (k')sq0.(k')
zJ zO S (k')

qq

j<q<i

Siq(k')Sjq(k')_ (k')_(k')
S..(k'+l) : S..(k') _ " j q

(k')zj zj
Sqq

q<j<i

This is equivalent, on adding a variable_ to

(k'+l) Rqj (k')

Rqj : R' (k"}
qq

R..(k'+l) = R. .(k'+l)
]-j ].j

.(k')Riq(k')Rqj

R (k')
'qq
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or_ on dropping a variable_ to

(k')
+i) Rqj

RqJ(_' - R UW"U-
q_ q+n

(k')Rqj(k')
R..(k'+l) = R..(k') Ri, q+n

zJ zJ R (k').
q_ q+n

where the (q+n)-th column of the R matrix takes the place of the qth in

the S matrix when a variable is being added.

If the first k variables were included in the regression_ then the

R matrix would be of the form

(k) (k) (k) (k)
i 0 -Sk+l, I " "" -Sn-l_ i -Snl SII (k) "''Ski

(k) (k) (k)
0 i -Sk+l_ k ... -Sn_l_ k -Snk

(k) (k) s (k)
0... © Sk+l;k+ 1 "'" Sn-l_k+l n;k+l

(k) (k) s (k)
0... 0 Sn-l_ k+l Sn-l_ n-i n_ n-i

(k) (k) S (k)... 0 Sn_k+ I Sn_n_l nn

op • ,

O ,oo

Skl(k) ...S_(k) 0 ...0

(_) (k) l
Sk+l_l "''Sk+l_k

0

(k) (k)O l
Sn-l_ i " " "Sn-l_k

(k) .Sn_(k) 0 0Snl .....

In effect the program inverts the S matrix in place_ proceeding from

pivot element to pivot element without rearranging rows and columns. Also,_
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advantage is taken of the symmetry in carrying out calculations in the

lower triangle only.

At this point, a list of included or active variables, the mean-

squares due to regression and to error, the F-ratio_ and the square of

the multiple correlation coefficient are printed. There are options for

printing the inverse matrix, the reduced sum of squares matrix, the

partial regression coefficients of the dependent variable on each of

the active variables, and the regression coefficients of the dependent

variable on the active variables.
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On Least Squares:
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ON IAL REPRESENTATION OF THE GENERAL

SOLUTION OF SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

By

Robert Silber

I. INTRODUCTION AND SUMMARY

We consider normal systems of first order, ordinary,

differential equations, i.e., we consider the system

Yi = fi(t'y_'Y2'''''Yn )' i = I, 2,..., n, (s)

in which the dot indicates differentiation with respect to t.

Let the set of functions

be the general solution to (s) in terms of the initial

time T and the initial values _i of the Yi"

Under certain conditions, such as those discussed, the

functions Yi will be analytic at a selected point

(t*,T*,_1*,_2*,...,_n*) and will therefore be expressible

in Taylor's series in n+2 variables neighboring the point

(t*,T*,DI*,D2*,...,Dn*). The information needed to calculate

the coefficients in this Taylor's series is the set of values

of the partial derivatives of the Yi at the point (t*,T*,DI*,

_2*,''',_n*)"

Within the numerical procedures discussed in Reference 3,

there is contained a method for obtaining the values of the

above partial derivatives, through any pre-specified order•

The method necessitates the use of a digital computer• In

writing Reference 3, this method was not given explicit mention,

because it was integrated into a more complex numerical process•

Since writing Reference 3, the author has come to realize that

perhaps the subject method is of sufficient interest to merit

an independent description. Thus, the purpose and content of

this paper is a description of the salient points of this

method; many of the troublesome details and minutiae are left

untreated, since they are all contained in Reference 3.
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II. T_ FUNDAMENTALIDENTITIES

The entire procedure is based on two fundamental identities
satisfied by the functions Y.. Before writing the identities,
it will be convenient to introduce abbreviated notation as
follows :

Y : (YI, Y2, ..., Yn),

n = (nI,_2, ..., _n ).

Thus Y(t,T,D)= (YI (t,T,DI,D2,..., _In ),...,Yn(t,T,DI,D2, Dn ).

The first of the fundamental identities is a consequence

of the Yi being solutions to (s).

i-- Yi (t'T'D) : fi (t'Y(t'T'D))" (i)
_t

i:l, 2, ...,n.

This is an identity in each of the n+2 arguments which

appear. In the event that each fi is analytic at the point

(t,Y(t,T,D)) and each Yi is analytic at the point (t,T,D),
the two sides of (i) represent the same analytic function, and

new identities can be obtained from (I) by unlimited differ-

entiation. Thus, for example, using the chain rule,

_2Yi _fi

(t,T,_) - (t,Y(t,T,D))
_t 2 St

+

n _fi

j:I _yj

_Yj
(t,Y(t,T,D)) _ (t,T,D),

_t

which, using (I), can be written

_fi
_2Yi (t,T,_) = _ (t,Y(t,_,D))

_t 2 _t

+ fj (t,Y(t,T,D)) (t,Y(t,T,D)),

i : 1,2,...,n .

(2)
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Similarly,

_2Y i

and

(t,T,_) =
_Yj

(t,Y(t,_,_)) (t,T,_),

i : I, 2, ..., n ,

(3)

_2Y i n _fi

(t,T,_) =_;= _YJ

_Yj
(t,Y(t,T,D)) -- (t,T,_),

$_k

i,k : I, 2, ..., n .

(4)

Clearly, by repeated differentiations, one can obtain

identities involving partial derivatives of higher orders.

The second of the two fundamental identities is a con-

sequence of the definition of the parameters T,_I,D2,...,_ n as
be_g "initial values."

Yi (7"T'_) : _i' i:l,2,...,n. (5)

As in (i), this is an identity in each of the n+l arguments

appearing, and both sides can be differentiated indefinitely at

points of analyticity. Hence,

_--{-(_'_-'_)+ _7 (_'T'_): o ,

so that by (I) and (5),

\

(_,_,_):-fi(_,Y(_,_,_): fi(_,_)

i : I, 2, ..., n.

(6)

492



Also,

(T,T,_) : 6ik; i, k : i, 2, ..., n , (7)

where 6ik is the Kronecker delta.

Again, as in the case of Equation (I), further differ-
entiations can be performed, yielding identities involving
partial derivatives of progressively higher orders.

In the procedure to follow, Equations (1)-(7), and higher
order equations to be obtained through appropriate differen-
tiations, will be used.

III. REFERENCEPOINTS AND REFERENCETRAJECTORIES

As was pointed out in the introduction, the aim of the
method being described is the expansion of the functions

Y., i=l,2,_.,n, in Taylor's series about the pre-specifiedp_int (t*,. ,_I*,_2",...,9n*). It is a clear necessity that
the functions Yi be analytic at this point. Analyticity is
also sufficient for existence and convergence of the Taylor's
series neighboring the point of expansion, but for our method
we shall require further properties. To facilitate the dis-
cussions concerned with these properties, we introduce some
definitions.

Definition: A real solution of (s) over a real interval

[a,b] is a set _I,_--_-7..-,_n_ of real-valued functions,
defined and differentiable off [a,b], and satisfying

_i(t) : fi(t,91 (t),92(t),...,gn(t),

i = I, 2,..., n; t e [a,b].

In keeping with our earlier abbreviated notation, we let

9= (91,92,...,9n), f=(fl,f2,..., fn) , and write the above
equation

_(t) = f(t,_(t)), t _[a,b],

where, of course, _ =(_1,_2, {_.n).]itself as the solution over "[a]
We shall refer to
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Definition:

The set

Suppose _ is a solution of s over [a,b] .

$(qo, a,b) = (_(t):te [a,b]') ,

which is a subset of n-dimensional space, is called the orbit

of _, over [a,b] . The set

J(_,a,b) = {(t, _(t)): te [a,b_ ,

which is a subset of (n+l) dimensional space, is called the

trajectory of _, over [a,b]. A reference trajectory is a
t_ajectory J(_,a,b) of a solution _ over an interval [a,b]

with the following property:

At each point (t_(_(t)) e _(_,a,b), each of the functions
fi' i=l,2,...,n, in ), is analytic*.

A real reference trajectory is a reference trajectory
0(% a,b_ for which _is real-valued in each component.

Analyticity, however, is still taken in the complex sense.

(cf. the definition below.)

From the theory of differential equations (References I

and 2), it is known that if (T,_,_2,...,_n) is a point at

which each function f., i=l,2,...,n, in (s), is analytic,
then there exists a u_ique complex function _ of the complex

variable z which is analytic in a complex neishborhood N of T,
which satisfies _(T) = D and which solves (s) at each point
of N.

Definition: A point (t*,T*,DI*,D2*,...,7)n *) shall be

call@d a reference point if the following conditions are met:

* fi is analytic at (t,_1(t),_2(t),...,_n(t)), if fi is

expressible by a power series

E c(i)woW ... Wn(Zo-t)W°(zl $1(t)) wl wnlw2 - ...( Zn-_n (t)) ,

which is convergant throughout an (n+l) complex dimensional

neighborhood of (t,_(t)), and represents fi there.
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(i) Each f., i=l,2,...,n, is analytic at

"'(t*,_1*,_2*,...,_n*)land bounded on some complex neighborhood

of that point.

(ii) Let 9 be the unique solution of (s), analytic

at v_, mnd satisfying 9(t*) =D*. Then 9 has an analytic

continuation _ along the real axis, from T* to t*.

(iii) Y(_,T*,t*) (or J(_,t*,T*), if t*<T*) is a

reference trajectory.

0

From this definition, it follows (for example, from

theorem 3.2 in chapter one of Reference i) that if

(t*,T*,DI*,Da*,...,Dn*) is a reference point, then the

general solution Y(t,T, DI,D2,...,Dn) mentioned in the intro-

duction, is well-defined and analytic at each point (t,T,_)

such that (T,_) _ _(_,T*,t*) and tc[T*,t*], and satisfies

Y(t,T*,D* ) = _(t), for each tC[T*,t*]. Thus, each of the

preceeding differentiations of identities is justified.

In practice, the system (s) has the property that its

solutions are real if t is real, and if the initial values

are real; consequently, the points in _(_,T*,t*) will have

real components instead of complex components. Nevertheless,
a complex, rather than real, notion of analyticity must be

retained, in order to justify the differentiations on which
_^_i_numerical ..... _.... is *_ _ bas_

IV. NUMERICAL CALCULATIONS

Let (t*, _, DI*, D2*, •• •'?n*) be a given reference point,

and let $(t) = Y(t,T*,D*), ts [T*,t*], as in the preceding

definitions. Let _-_ _(_,_*,t*), the reference trajectory

defined by, and corresponding to, the given reference point.

By numerical integration on a digital computer, points

of _* can be calculated at selected values of t in [T*,t*] ,

SO that we assume g_to be numerically known.

We now define an n× n matrix function of time.

be the matrix with elements fij defined by

_fi

fij (t) - (t,$(t));

bYj

t c [_*,t*];

i, j = i, 2, ..., n .

Let F
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In keeping with popular terminology, we shall call F the
transition matrix of the system (s) along the trajectory_.
Notice that since (s) is given, the functions

_fi__ (t,_,y2,...,yn)

_Yj

can be obtained by direct differentiation of the right hand
sides of (s). Further, since J* is numerically known, we can

assume that by further calculations, F is numerically known

for each te [T*,t*] .

Next, we define an n×(n+l) matrix function of time. Let

X be the matrix with elements xij defined by

Yi

xij(t ) = -- (t,T*,D*); t e [T*,t*], i,j = 1,2,...,n ,

_j

Q

_Yi

xij (t) _T (t'r*'D*) ;
t e [T*,t*], i : 1,2,...,n,

j = n+l.

If, in Equations (3) and (4), one sets (T,D) = (T*,_*),

then each side of the equations becomes a function of t alone,

and partial derivatives with respect to t become total• Further-

more, the equations, taken over all indices are equivalent to
the single matrix equation

x = Fx . (s)

Furthermore, Equations (6) and (7) give the entries of X(T*);

x(T*)=

w

I 0 0 ... 0

0 i 0 ... 0

0 0 I ... 0

0 0 0 ... i

- 1
n th column

m

-fl (TI*,D*)

-f2 (T*,O*)

-fs(T*,_* )

-_n(T*,_*)__

(n+l)st column

(9)

I
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Direct numerical integration of (8) from t = T* to t = t*,

using the initial value given by (9), will yield, with one

exception, all first partials needed for the Taylor's series.

The exception is

_Yi(t*,T*,_*), i = I, 2, ..., n,

but this can be calculated directly from the point (t*,_(t*))

in _* and the right side of Equation (I).

The method extends readily to higher order partials. The

analogue of (8)must be obtained by differentiations of I_ I
and (4), and the analogue of (9) by differentiations of and

(7). The new matrix equations will be of higher dimensions
since there are many more second partials than first partials.

The involved equations and determinations are treated in detail
in reference three, and so are not taken up here. It is felt

that a detailed description for first-order partials is suffi-

cient to convey the basic ideas of the method.
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